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Abstract 
Pervasive computing calls for suitable middleware and 
programming models to deal with large software 
systems dived in dynamic mobile network environments. 
Here we present the programming model of TOTA 
(�Tuples On The Air�), a novel middleware for 
supporting adaptive context-aware activities in 
pervasive  computing scenarios. The key idea in TOTA 
is to rely on spatially distributed tuples, propagated 
across a network on the basis of application-specific 
rules, for both representing contextual information and 
supporting uncoupled interactions between application 
components. As shown with the help of a case study 
scenario, TOTA promotes a simple programming model 
and can effectively facilitate access to distributed 
information, navigation in complex networks, and 
achievement of complex coordination tasks in a fully 
distributed and adaptive way. 

1. Introduction 
Computing is becoming intrinsically pervasive and 
mobile [15]. Computer-based systems are going to be 
embedded in all our everyday objects and in our everyday 
environments. These systems will be typically 
communication enabled, and capable of interacting with 
each other in the context of complex distributed 
applications, e.g., to support our cooperative activities 
[13], to monitor and control our environments [3], and to 
improve our interactions with the physical world [9]. 
Also, since most of the embeddings will be intrinsically 
mobile, as a car or a human, distributed software 
processes and components (from now on, we adopt the 
term �agents� to generically indicate the active 
components of a distributed application) will have to 
effectively interact with each other and orchestrate their 
activities despite the network and environmental 
dynamics induced by mobility.  

The above scenario introduces peculiar challenging 
requirements in the development of distributed software 
systems: (i) since new agents can leave and arrive at any 

time, and can roam across different environments, 
applications have to be adaptive, and capable of dealing 
with such changes in a flexible and unsupervised way; (ii) 
the activities of the software systems are often contextual, 
i.e., strictly related to the environment in which the 
systems execute (e.g., a room or a street), whose 
characteristics are typically a priori unknown, thus 
requiring to dynamically enforce context-awareness; (iii) 
the adherence to the above requirements must not clashes 
with the need of promoting a simple programming model 
possibly requiring light supporting infrastructures. 

Unfortunately, current practice in distributed software 
development, as supported by currently available 
middleware infrastructures, is unlikely to effectively 
address the above requirement: (i) application agents are 
typically strictly coupled in their interactions (e.g., as in 
message-passing models and middleware), thus making it 
difficult to promote and support spontaneous 
interoperations; (ii) agents are provided with either no 
contextual information at all or with only low-expressive 
information (e.g., raw local data or simple events), 
difficult to be exploited for complex coordination 
activities; (iii) due to the above, the results is usually in 
an increase of both application and supporting 
environment complexity.  

The approach we propose in this paper builds on the 
lessons of uncoupled coordination models like event-
based [5] and tuple space programming [4] and aims at 
providing agents with effective contextual information 
that � while preserving the lightness of the supporting 
environment and promoting simplicity of programming � 
can facilitate both the contextual activities of application 
agents and the definition of complex distributed 
coordination patterns. Specifically, in the TOTA 
(�Tuples On The Air�) middleware, all interactions 
between agents take place in a fully uncoupled way via 
tuple exchanges. However, there is not any notion like a 
centralized shared tuple space. Rather, tuples can be 
�injected� into the network from any node and can 
propagate and diffuse accordingly to tuple-specific 
propagation patterns. The middleware takes care of 
propagating the tuples and of adapting their shape 
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accordingly to the dynamic changes that can occur in the 
network (as due by, e.g., mobile or ephemeral nodes). 
Agents can exploit a simple API to define and inject new 
tuples in the network and to locally sense both tuples and 
events associated with changes in the tuples� distributed 
structures (e.g., arrival and dismissing of tuples).  

2. Motivations and Case Study 
To sketch the main motivations behind TOTA, we 
introduce a simple case study scenario and try to show 
the inadequacy of traditional approaches in this context.  

2.1. Case Study Scenario 
Let us consider a big museum, and a variety of tourists 
moving within it. We assume that each of them is 
provided with a wireless-enabled computer assistant (e.g., 
a PDA). Also, it is realistic to assume the presence, in the 
museum, of a densely distributed network of computer-
based devices, associated with rooms, corridors, art 
pieces, alarm systems, climate conditioning systems, etc. 
Such devices can be exploited for both the sake of 
monitoring and control, as well as for the sake of 
providing tourists with information helping them to 
achieve their goals. For tourists, such goals may include 
retrieving information about art pieces, effectively 
orientate themselves in the museum, and meeting with 
each other (in the case of organized groups). In the 
following, we will concentrate on two specific 
representative problems: (i) how tourists can gather and 
exploit information related to an art piece they want to 
see; (ii) how tourists can meet in the museum. 

In any case, whatever specific application problem has 
to be addressed in the above scenario, it should meet the 
requirements identified in the introduction. (i) Adaptivity: 
tourists move in the museum. They are likely to come and 
go at any time. Art pieces can be moved around the 
museum during special exhibitions or during 
restructuring works. Thus, the topology of the overall 
network can change with different dynamics and for 
different reasons, all of which have to be preferably faced 
without human intervention. (ii) Context-awareness: as 
the environment (i.e., the museum map and the location 
of art pieces) may not be know a priori (tourists can be 
visiting the museum for the first time), and it is also likely 
to change in time (due to restructuring and exhibitions), 
application agents should be dynamically provided with 
contextual information helping their users to move in the 
museum and to coordinate with each other without 
relying on any a priori information; (iii) Simplicity: PDAs 
may have limited battery life, as well as limited hardware 
and communication resources. This may require a light 
supporting environment and the need for applications to 
achieve their goal with limited computational and 

communication efforts. 
We emphasize the above sketched scenario exhibits 

characteristics that are typical of a larger class of 
pervasive computing scenarios. Among the others, traffic 
management and manufacturing control systems [9], 
mobile robots and sensor networks [15]. Therefore, also 
all our considerations are of a more general validity, 
besides the addressed case study.  

2.2. Inadequacy of Traditional Approaches 
Most coordination models and middleware used so far in 
the development of distributed applications appear 
inadequate in supporting coordination activities in 
pervasive computing scenarios. 

In direct communication models, a distributed 
application is designed by means of a group of agents 
that are in charge of communicating with each other in a 
direct and explicit way. Systems like Jini [7], as well as 
FIPA agent-based systems [1], support such a direct 
communication model. One problem of this approach is 
that agents, by having to interact directly with each other, 
can hardly sustain the openness and dynamics of 
pervasive computing scenarios: explicit and expensive 
discovery of communication partners - typically 
supported by some sort of directory services - has to be 
enforced. Also, agents are typically placed in a �void� 
space: the model, per se, does not provide any contextual 
information, agents can only perceive and interact with 
(or request services to) other agents, without any higher 
contextual abstraction. In the case study scenario, tourists 
have to explicitly discover the location of art pieces, or of 
other tourists. Also, to orchestrate their movements, 
tourist must explicitly keep in touch with each other and 
agree on their respective movements via direct 
negotiation. These activities require notable 
computational and communications efforts and typically 
end up with ad-hoc solutions � brittle, inflexible, and 
non-adaptable � for a contingent coordination problem.  

Shared data-space models exploit localized data 
structures in order to let agents gather information and 
interact and coordinate with each other. These data 
structures can be hosted in some centralized data-space 
(e.g., tuple space), as in EventHeap [8], or they can be 
fully distributed over the nodes of the network, as in 
MARS [4]. In these cases, agents are no longer strictly 
coupled in their interactions, because tuple spaces 
mediate interactions and promote uncoupling. Also, tuple 
spaces can be effectively used as repositories of local, 
contextual information. Still, such contextual information 
can only represent a strictly local description of the 
context that can hardly support the achievement of global 
coordination tasks. In the case study, one can assume that 
the museum provides a set of data-spaces, storing 
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information such as nearby art pieces as well as messages 
left by the other agents. Tourists can easily discover what 
art pieces are nearby them, but to locate a farther art 
piece they should query either a centralized tuple space 
or a multiplicity of local tuple spaces, and still they 
would have to internally merge all the information to 
compute the best route to the target. Similarly, tourists 
can build an internal representation of the other people 
distribution by storing tuples about their presence and by 
accessing several distributed data-spaces. However, the 
availability of such information does not free them from 
the need of negotiating with each other to orchestrate 
movements. In other words, despite the availability of 
some local contextual information, a lot of explicit 
communication and computational work is still required 
to the application agents to effectively achieve their tasks. 

In event-based publish/subscribe models, a distributed 
application is modeled by a set of agents interacting with 
each other by generating events and by reacting to events 
of interest. Typical infrastructures rooted on this model 
are: Siena[5] and Jini Distributed Events [7]. Without 
doubt, an event-based model promotes both uncoupling 
(all interactions occurring via asynchronous and typically 
anonymous events) and a stronger context-awareness: 
agents can be considered as embedded in an active 
environment able of notifying them about what is 
happening which can be of interest to them (as 
determined by selective subscription to events). In the 
case study example, a possible use of this approach 
would be to have each tourist notify its movements across 
the building to the rest of the group. Notified agents can 
then easily obtain an updated picture of the current group 
distribution in a simpler and less expensive way than 
required by adopting shared data spaces. However, this 
approach still relies on agents for negotiating the 
coordinated movements and does not alleviate their 
computational tasks (i.e., in the case study, tourists still 
have to explicitly negotiate their movements).  

3. The Tuples on the Air Approach 
The definition of TOTA is mainly driven by the above 
considerations. It gathers concepts from both tuple space 
approaches [4, 8] and event-based ones [5, 7] and 
extends them to provide agents with a unified and 
flexible mechanism to deal with both context 
representation and components� interaction. 

In TOTA, we propose relying on distributed tuples 
for both representing contextual information and enabling 
uncoupled interaction among distributed application 
components. Unlike traditional shared data space models, 
tuples are not associated to a specific node (or to a 
specific data space) of the network. Instead, tuples are 
injected in the network and can autonomously propagate 

and diffuse in the network accordingly to a specified 
pattern. Thus, TOTA tuples form a sort of spatially 
distributed data structure able to express not only 
messages to be transmitted between application 
components but, more generally, some contextual 
information on the distributed environment.  

To support this idea, TOTA is composed by a peer-
to-peer network of possibly mobile nodes, each running a 
local version of the TOTA middleware. Each TOTA 
node holds references to a limited set of neighbor nodes. 
The structure of the network, as determined by the 
neighborhood relations, is automatically maintained and 
updated by the nodes to support dynamic changes, 
whether due to nodes� mobility or to nodes� failures. The 
specific nature of the network scenario determines how 
each node can found its neighbors: e.g., in a MANET 
scenario, TOTA nodes are found within the range of their 
wireless connection. 

Upon the distributed space identified by the dynamic 
network of TOTA nodes, each component is capable of 
locally storing tuples and letting them diffuse through the 
network. Tuples are injected in the system from a 
particular node, and spread hop-by-hop accordingly to 
their propagation rule. In fact, a TOTA tuple is defined in 
terms of a �content�, and a �propagation rule�.  T=(C,P). 
The content C is an ordered set of typed fields 
representing the information carried on by the tuple. The 
propagation rule P determines how the tuple should be 
distributed and propagated across the network. This 
includes determining the �scope� of the tuple (i.e. the 
distance at which such tuple should be propagated and 
possibly the spatial direction of propagation) and how 
such propagation can be affected by the presence or the 
absence of other tuples in the system. In addition, the 
propagation rules can determine how tuple�s content 
should change while it is propagated. In fact, tuples are 
not necessarily distributed replicas: by assuming different 
values in different nodes, tuples can be effectively used to 
build a distributed overlay data structure expressing some 
kind of contextual and spatial information (see figure 1). 
So, unlike event based models, propagation of tuples is 
not driven by a publish-subscribe schema, but it is 
directly encoded in tuples� propagation rule and, unlike 
an event, can change its content during propagation.  

The spatial structures induced by tuples propagation 
must be maintained coherent despite network dynamism 
(see figure 1). To this end, the TOTA middleware 
supports tuples propagation actively and adaptively: by 
constantly monitoring the network local topology and the 
income of new tuples, the middleware automatically re-
propagates tuples as soon as appropriate conditions 
occur. For instance, when new nodes get in touch with a 
network, TOTA automatically checks the propagation 
rules of the already stored tuples and eventually 
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propagates the tuples to the new nodes. Similarly, when 
the topology changes due to nodes� movements, the 
distributed tuple structure automatically changes to 
reflect the new topology. For instance, figure 1 shows 
how the structure of a distributed tuple can be kept 
coherent by TOTA in a MANET scenario, despite 
dynamic network reconfigurations. 
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Figure 1: (Top) the general scenario of TOTA: 
application components live in an environment 
in which they can inject tuples that 
autonomously propagate and sense tuples 
present in their local neighborhood. The 
environment is realized by means of a peer-to-
peer network in which tuples propagates by 
means of a multi-hop mechanism. (Bottom) 
when the tuple source moves, tuples are 
updated to take into account the new topology 
 
From the application components� point of view, 
executing and interacting basically reduces to inject 
tuples, perceive local tuples and local events, and act 
accordingly to some application-specific policy. Software 
components on a TOTA node can inject new tuples in the 
network, defining their content and their propagation 
rule. They have full access to the local content of the 
middleware (i.e., of the local tuple space), and can query 
either the local tuple space or the one-hop  neighbor tuple 
spaces to check for the presence of specific tuples. In 
addition, components can be notified of events (e.g., 
changes in tuple space content) occurring either locally or 
in the one-hop neighborhood. 

3.1. The Case Study in TOTA 
Let us consider the case study introduced in Section 2.  

We recall that we assume that the museum is properly 
instrumented with a reasonably dense number of wireless 
TOTA peers, e.g., associated with museum rooms and 
corridors as well as with art pieces, and that tourists are 
provided with wireless enabled PDAs running the TOTA 
middleware. All these devices, by connecting in ad-hoc 
network, define the structure of the TOTA space. 
Moreover, we make the following assumptions: (i) 
devices are provided with localization mechanisms 
enabling them to know neighbors� coordinates in a 
private local coordinate frame. (ii) The rough topology of 
the ad-hoc network being formed by TOTA devices 
resembles the museum floor-plan. This means that there 
are not network links between physical barriers (like 
walls). To achieve this property, we suppose that either 
the devices are able to detect and drop those network 
links crossing physical barriers (e.g. relying on signal 
strength attenuation or some other sensors installed on 
the device) or that the museum building is pre-installed 
with a network backbone � reflecting its floor-plan � and 
that all the nodes can connect only to the backbone. And 
there are not long-range, wired backbones in the network. 
To achieve this property it is possible to rely on the 
natural physical attenuation of radio-based signals (in 
wireless communication), or to constrain the addressable 
space of wired nodes, to let them able to talk only with 
close peers.  

Coming back to the case study, the first problem we 
face is that of enabling a tourist to discover the presence 
and the location of a specific art piece. TOTA makes this 
very simple, we could consider that art pieces can sense 
the income of tuples propagated by tourists � and 
describing the art piece they are looking for � and are 
programmed to react to these events by propagating 
backward to the requesting tourists a tuple containing 
their own location information. In particular, Query and 
Answer tuples could be defined as described in figure 2. 
Since TOTA keeps the tuple shape coherent despite node 
movements, Query tuples create gradients leading to their 
sources even if the sources move. Thus Answer tuples 
can reach a tourist while he/she is in movement. 

The second problem we consider involves a �meeting� 
service whose aim is to help a group of tourists to find 
and move towards the most suitable room for a meeting. 
Even if several different policies can be though related to 
how a group of tourists should meet, here we will 
concentrate on having a group of tourists that wants to 
meet in the room that is between them (their 
�barycenter�). To this purpose, each tourist involved in 
the meeting can inject the Meeting tuple described in 
figure 2. Then, any tourist can follow downhill the tuple 
propagated by the farther other tourist in the group. In 
this way all tourists �fall� towards each other, and they 
meet in their barycenter room. It is interesting to notice, 
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that this room is evaluated dynamically and the process 
takes into account unexpected situations (e.g. crowded 
areas). So if some tourists encounter crowd in their path 
to the meeting room, the meeting room is automatically 
changed to a room closer to these unlucky tourists. 

 
Query tuple 
C= (description , distance) 
P=(propagate to all peers hop by hop, increasing the 

�distance� field by one at every hop) 
Answer tuple 
C = (description, location, distance) 
P = (propagate following downhill the �distance� of 

the associated query tuple, incrementing distance 
value by one at every hop) 

Meeting tuple 
C= (tourist_name, distance) 
P=(propagate to all peers hop by hop, increasing the 

�distance� field by one at every hop) 

Figure 2: General description of the tuples 
involved in the case study scenario: Query 
Tuple, Answer Tuple and Meeting Tuple 

3.2. Implementation 
From an implementation point of view, we developed a 
first prototype of TOTA running on Compaq IPAQs, 
running Linux (Familiar distribution) and equipped with 
802.11b and Java 2 Micro Edition (J2ME, CDC, 
Personal profile). IPAQs connect locally in the MANET 
mode (i.e. without requiring access points) creating the 
skeleton of the TOTA network. Moreover, we have 
implemented a simulator to analyze TOTA behavior in 
presence of hundreds of nodes. The simulator, developed 
in Java, enables examining TOTA behavior in a MANET 
scenario, in which nodes topology can be rearranged 
dynamically either by a drag and drop user interface or 
by autonomous nodes� movements. The strength of our 
simulator is that, by adopting well-defined interfaces 
between the  simulator and the application layers, the 
same code �installed� on the emulated devices can be 
installed on real devices. This allow to test applications 
first in the simulator, then to upload them directly in a 
network of real devices. Further details on the 
implementation can be found in [10].  

4. TOTA Programming 
When developing applications upon TOTA, one has 
basically to know: (i) what are the primitive operations to 
interact with the middleware; (ii) how to specify tuples 
and their propagation rule; (iii) how to exploit the above 
to code agents. 

public void inject (TotaTuple tuple); 
public Vector read (Tuple template); 
public Vector readOneHop (Tuple template); 
public Tuple keyrd (Tuple template); 
public Vector keyrdOneHop(Tuple template); 
public Vector delete (Tuple template); 
public void subscribe (Tuple template, 
ReactiveComponent comp, String rct); 
public void unsubscribe (Tuple template, 
ReactiveComponent comp); 

Figure 3: TOTA API 

public class ToyAgent implements AgentInterface 
{ 
 private TotaMiddleware tota;  
 /* agent body */ 
 public void start() {  
  /* create a tuple and inject it*/ 
  FooTuple foo = new FooTuple(“Hello World!”); 
  tota.inject(foo); 
  /* define a template tuple */ 
  FooTemplTuple t = new FooTempTuple(); 
  /* read local tuples matching the template */ 
  Vector v = tota.read(t); 
  /* subscribe to changes in tuples matching t*/ 
  tota.subscribe(t,this,””); 
 } 
 /* code of the reaction to the subscrption */ 
 public void react(String reaction, String 
event)  { System.out.pritnln(event);}} 

Figure 4: Example code of a ToyAgent accessing 
the TOTA API 

4.1. TOTA Primitives  
TOTA is provided with a simple set of primitive 
operations to interact with the middleware (see figure 3). 
inject is used to inject the tuple passed as an argument in 
the TOTA network. Once injected the tuple starts 
propagating accordingly to its propagation rule 
(embedded in the tuple definition). The read primitive 
accesses the local TOTA tuple space and returns a 
collection of the tuples locally present in the tuple space 
and matching the template tuple passed as parameter. The 
readOneHop primitive returns a collection of the tuples 
present in the tuple spaces of the node�s one-hop 
neighborhood and matching the template tuple. Each 
TOTA distributed tuple is also marked with an unique id 
(invisible at the application level) enabling a fast access 
to the tuple, disregarding its content. The keyrd and 
keyrdOneHop methods serve to this purpose, they look 
for tuples with the same id of the tuple passed as 
argument. The typical usage of these methods is to 
evaluate how a specific tuple has changed in the 
neighborhood. Specifically in the case of tuples with a 
numeric content, it allows to evaluate the tuple�s gradient. 
The delete primitive extracts from the local middleware 
all the tuples matching the template and returns them to 
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the invoking agent. In addition, subscribe and 
unsubscribe primitives are defined to handle events. 
These primitives rely on the fact that any event occurring 
in TOTA (including: arrivals of new tuples, connections 
and disconnections of peers) can be represented as a 
tuple. Thus: the subscribe primitive associates the 
execution of a reaction method in the agent in response to 
the occurrence of events matching the template tuple 
passed as first parameter. Specifically, when the a 
matching event happens, the middleware invokes on the 
agent a special react method passing as parameters, the 
reaction string and the matching event. The unsubscribe 
primitives removes matching subscriptions 

The simple application agent in figure 4 clarifies the 
above concepts.  

4.2. Specifying Tuples 
Relying on an object oriented methodology, TOTA tuples 
are actually objects: the object state models the tuple 
content, while the tuple�s propagation has been encoded 
by means of  a specific propagate method. 
When a tuple is injected in the network, it receives a 
reference to the local instance of the TOTA middleware, 
then its code is actually executed (the middleware 
invokes the tuple�s propagate method) and if during 
execution it invokes the middleware move method, the 
tuple is actually sent to all the one-hop neighbors, where 
it will be executed recursively. During migration, the 
object state (i.e. tuple content) is properly serialized to be 
preserved and rebuilt upon the arrival in the new host. 

Following this schema, we have defined an abstract 
class TotaTuple, that  provides a general framework for 
tuples programming (see figure 5). 

 
abstract class TotaTuple { 
protected TotaInterface tota; 
/* the state is the tuple content */ 
… 
/* this method inits the tuple, by giving a 
reference to the current TOTA middleware */ 
public void init(TotaInterface tota) { 
 this.tota = tota; } 
/* this method codes the tuple actual actions */ 
public abstract void propagate(); 
/* this method enables the tuple to react to 
happening events… see later in the article */ 
public void react(String reaction, String event) 
 {}} 

Figure 5: The structure of the TotaTuple class 

It is worth noting that a tuple is not thread by its own, 
it is actually executed by the middleware, that runs the 
tuple�s init and propagate methods. The point to 
understand is that when the middleware has finished the 
execution of the tuple�s methods, the tuple (on that node) 
becomes a �dead� data structure eventually stored in the 

middleware local tuple space.       
Tuples, however, must remain active even after the 

middleware has run their code. This is fundamental 
because their maintenance algorithm � see Section 5 - 
must be executed whenever the right conditions appear 
(e.g. a new peer has been connected). To this end, tuples 
can place subscriptions, to the TOTA event engine as 
provided by the standard TOTA API. These subscriptions 
let the tuples remain �alive�, being able to execute upon 
triggering conditions. 

This model for tuples gives the maximum flexibility. 
However, the problem is that it is too complex, and we do 
not foster the idea of having the programmer to write 
tuples code form scratch. For this reason, we have 
developed a tuples� class hierarchy from which the 
programmer can inherit to create custom tuples without 
worrying about most of all the intricacies of dealing with 
tuple propagation and maintenance. 

The only child of the TotaTuple class, is the class 
StructureTuple. This class is a template to create 
distributed data structures over the network. However,  
StructureTuples are NOT maintained by the middleware. 
This means that if the topology of the network changes 
the tuple local values are left untouched. This class 
inherits from TotaTuple and implements the superclass 
method propagate (see figure 6).  

 
public final void propagate() { 
 if(decideEnter()) { 
  boolean prop = decidePropagate(); 
  changeTupleContent(); 
  this.makeSubscriptions(); 
  tota.store(this); 
  if(prop)  tota.move(this); }} 

Figure 6: Standard implementation of the 
propagate method in the StructureTuple class 

The class StructureTuple implements the methods: 
decideEnter, decidePropagate, changeTupleContent and 
makeSubscriptions so as to realize a breadth first, 
expanding ring propagation. The result is simply a tuple 
that floods the network without changing its content. 
Specifically, when a tuple arrives in a node (either 
because it has been injected or it has been sent from a 
neighbor node) the middleware executes the decideEnter 
method that returns true if the tuple can enter the 
middleware and actually execute there, false otherwise. 
The standard implementation returns true if the 
middleware does not already contain that tuple. 

If the tuple is allowed to enter the method 
decidePropagate is run. It returns true if the tuple has to 
be further propagated, false otherwise. The standard 
implementation of this method returns always true, 
realizing a tuple�s that floods the network being 
recursively propagated to all the peers.  
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The method changeTupleContent change the content 
of the tuple. The standard implementation of this method 
does not change the tuple content. 

The method makeSubscriptions allows the tuple to 
place subscriptions in the TOTA middleware. In this way 
the tuple can react to events even when they happen after 
the tuple completes its execution. The standard 
implementation does not subscribe to anything. 

After that, the tuple is inserted in the TOTA tuple 
space by executing tota.store(this). Then, if the 
decidePropagate method returned true, the tuple is 
propagated to all the neighbors via the command 
tota.move(this). Note that these last two commands are 
not in the TOTA API, since their access is restricted to 
tuples only.  

The tuple will eventually reach neighboring nodes, 
where it will be executed again. It is worth noting that the 
tuple will arrive in the neighboring nodes with the content 
changed by the last run of the changeTupleContent 
method. 

Programming a TOTA tuple to create a distributed 
data structure basically reduces at inheriting from the 
above class and overloading the four above methods to 
customize the tuple behavior. Here in the following, we 
present two examples to show the expressiveness of the 
introduced framework. 

A NMGradient tuple creates a tuple that floods the 
network in a breadth-first way and have an integer hop-
counter that is incremented by one at every hop (see 
figure 7). To code this tuple one has basically to: 
• place the integer hop counter in the object state 
• overload changeTupleContent, to let the tuple 

change the hop counter at every propagation step 
• overload decideEnter so as to allow the entrance not 

only if in the node there is not the tuple yet � as in 
the base implementation -, but also if there is the 
tuple with an higher hop-counter. This allows to 
enforce the breadth-first propagation assuring that 
the hop-counter truly reflects the hop distance from 
the source. 

A DownhillTuple  creates a tuple that follows another 
NMGradientTuple downhill (see figure 8). To code this 
tuple one has basically to: 
• overload the decideEnter method to let the tuple 

enter only if the value of the NMGradientTuple in 
the node is less that the value on the node from 
which the tuple comes from. 

The rest of the hierarchy has been built in the same 
way: by overloading the methods controlling tuple 
propagation. Programmers can inherit from the hierarchy 
to further customize their tuple�s propagation. The only 
point they have to remember is to call the superclass 
implementation before actually writing their own 
overload, to be sure that code we developed in the 

hierarchy is actually executed. In the following we give a 
brief overview of the rest of the hierarchy. 
 
public class NMGradient extends StructureTuple { 
 public int hop = 0; 
 
public boolean decideEnter() { 
 super.decideEnter(); 
 NMGradient prev =(NMGradient)tota.keyrd(this); 
 return (prev == null ||  

 prev.hop > (this.hop + 1)); 
} 
protected void changeTupleContent() { 
 super.changeTupleContent(); 
 hop++;}} 

Figure 7: Tuple example: NMGradient class 

 
public class DownhillTuple extends 
StructureTuple { 
 public int oldVal = 9999; 
 NMGradientTuple trail; 
 
 public DownhillTuple(String toFollow) { 
  trail = new NMGradientTuple(); 
  trail.setContent(toFollow);} 
 
 public boolean decideEnter() { 
  super.decideEnter(); 
  int val = getGradientValue(); 
  if(val < oldVal) { 
   oldVal = val; 
   return true; 
  } 
  else 
   return false;} 
  
 /* this method returns the minimum hop-value of 
the NMGradient tuples matching the tuple to be 
followed in the current node */   
 private int getGradientValue() { 
  Vector v = tota.read(trail); 
  int min = 9999; 
  for(int i=0; i<v.size(); i++) { 
   NMGradientTuple gt = 
   (NMGradientTuple)v.get(i); 
   if(min > gt.hop) 
    min = gt.hop; 
  } 
 return min;}} 

Figure 8: Tuple example: DownhillTuple class 

MessageTuples are used to create messages that are 
not stored in the local tuple spaces, but just flow in the 
network. The basic structure is the same as 
StructureTuple, but a default subscription is in charge to 
erase the tuple after some time passed.   

HopTuples create distributed data structure that are 
maintained by the TOTA middleware, to reflect changes 
in the network topology. Basically this class overloads 
the empty makeSubscriptions method of the 
StructureTuple class, to let these tuples react to changes 
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in the topology, by adjusting their values to always be 
consistent with the hop-distance form the source. It is 
worth noting that if the NMGradient tuple would have 
been inherited from HopTuples the resulting tuple would 
have been adaptive to source movements. 

MetricTuples and SpaceTuples rely on spatial 
distances rather than hop-distances. The assumption here 
is to have radar-like location devices installed on nodes 
able to spatially localize neighboring (directly accessible) 
nodes. In other words, each device must be able to create 
a local private coordinate system by localizing 
neighborhood nodes. The basic implementation of these 
tuples, from which to inherit, is a tuple that combines 
local coordinate systems, to create a shared coordinate 
system, with the center in the node that injected the tuple. 

A detailed explanation of the whole class hierarchy is 
outside the scope of this paper. More detailed 
information can be found in [11]. 

4.3. Programming the Case Study 
It is rather easy now to program the agents required in 
our case study. The tuples they will use are the 
NMGradient and the DownhillTuple presented in the 
previous section (actually, the very first line of 
NMGradient should be changed to inherit from 
HopTuple). 

With regard to the problem of gathering contextual 
information. We consider that art pieces (represented by 
ArtAgen, see figure 9) are programmed in order to sense 
the income of query tuples propagated by tourists 
(represented by QueryAgent, see figure 10) and to react 
by propagating backward to the requesting tourists their 
location information. 

More in detail, the QueryAgent performs just two 
simple operations: it injects in the network a tuple of 
class NMGradient. Then it subscribes to the income of all 
the DownhillTuples (which are assumed to describe an 
art piece and its location) having as the first field �Monna 
Lisa�, the agent associated to the Monna Lisa painting is 
expected to generate. The associated reaction 
displayReaction is executed on receipt of such tuple to 
print out the content of the received event tuple. 

Correspondently, each ArtAgent is identified by a 
description, representing the art piece and its behavior is 
to subscribe to the tuples querying for itself. The reaction 
to such an event is to inject a DownhillTuple that simply 
follows backward the query tuple to reach the tourist 
agent issuing the request. 

With regard to the meeting application. The algorithm 
followed by meeting agents (see figure 11) is very 
simple: agents have to determine the farthest peer, and 
then move by following downhill that peer�s presence 
tuple. In this way agents will meet in their barycenter. 
 

public class ArtAgent implements AgentInterface 
{ 
 private TotaMiddleware tota;  
 /* piece of art description and location */ 
 private String description, location; 
 /* agent body */ 
 public void start() {  
 /* subscribe to the query */ 
 NMGradient query = new NMGradient(); 
 query.setContent(description); 
 tota.subscribe(query,this,”answerQuery”); 
 } 
 /*the reaction injects the answer tuple. The 

answer will be coded by a DownhillTuple 
following the query. The query is here 
referenced as OneHopIncTuple event */ 

 public void react(String reaction, String 
event) { 
  NMGradient query = Tuple.deserialize(event); 
  DownhillTuple answer = new 
DownhillTuple(query.content); 
  answer.setContent(description+” ”+location); 
  tota.inject(answer); }} 

Figure 9: Agent example: ArtAgent 

public class QueryAgent implements 
AgentInterface { 
 private TotaMiddleware tota;  
 /* agent body */ 
 public void start() {  
  /* inject the query */ 
  NMGradient query = new NMGradient(); 
  query.setContent(“Monna Lisa”); 
  tota.inject(query); 
  /* subscribe to the answer: the answer will be 

conveyed in a DownhillTuple, see 6.1 */ 
  DownhillTuple answer = new DownhillTuple(); 
  answer.setContent(“Monna Lisa *”); 
  tota.subscribe(answer,this,”display”); } 
 /* the reaction simply prints out the result */ 
 public void react(String reaction, String 
event) { 
  if(reaction.equalsIgnoreCase("display ")) { 
  System.out.pritnln(“Monna Lisa:“ + event); }} 

Figure 10: Agent example: QueryAgent 

public class MeetingAgent extends Thread 
implements AgentInterface { 
 private TotaMiddleware tota; 
 …  
 public void run() { 
// inject meeting tuple to participate meeting 
  NMGradient mt = new NMGradient(); 
  mt.setContent(peer.toString()); 
  tota.inject(mt); 
  while(true) {  
   /* read other agents’ meeting tuples */ 
   NMGradient coordinates = new NMGradient(); 
   Vector v = tota.read(coordinates); 
   /* evaluate the gradients and select the peer 

to which the gradient goes downhill */ 
   GenPoint destination = getDestination(v); 
   /* move downhill following meeting tuple */ 
      peer.move(destination); } }…} 

Figure 11: Agent example: MeetingAgent 
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5. Performances and Experiments 
One of the biggest concerns regarding our model is about 
scalability and performances. How much burden is 
requested to the system to maintain tuples? 

Due to page limit, we will concentrate in this section  
to HopTuples only, since they are the ones actually used 
in the paper�s case study and are the most difficult to be 
maintained. Further details on these topics can be found 
in [11]. HopTuples� maintenance operations are required 
upon a change in the network topology, to have the 
distributed tuples reflect the new network structure. This 
means that maintenance operations are possibly triggered 
whenever, due to nodes� mobility or failures, new links in 
the network are created of removed. Because of 
scalability issues, it is fundamental that the tuples� 
maintenance operations are confined to an area 
neighboring the place in which the topology had changed. 
This means that, if for example,  a device in a MANET 
breaks down (causing a change in the network topology) 
only neighboring devices should change their tuples� 
values. The size of this neighborhood is not fixed and 
cannot be predicted a-priori, since it depends on the 
network topology. For example, if the source of a tuple 
gets disconnected from the rest of the network, the 
updates must inevitably involve all the other peers in the 
network (that must erase that tuple form their 
repositories, see figure 12-top). However, especially for 
dense networks, this is unlikely to happen, and usually 
there will be alternative paths keeping up the tuple shape 
(see figure 12-bottom). 
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Figure 12: The size of the update neighborhood 
depends on the network topology. Here is an 
example with a tuple incrementing its integer 
content by one, at every hop. (top) the specific 
topology force update operations on the whole 
network (bottom) if alternative paths can be 
found, updates can be much more localized. 

How can we perform such localized maintenance 
operations in a fully distributed way? To fix  ideas, let us 
consider the case of a tuple incrementing its integer 
content by one, at every hop. 

Given a local instance of such a tuple X, we will call Y 
a X�s supporting tuple if: Y belongs to the same 

distributed tuple as X, Y is one-hop distant from X, Y 
value is equal to X value minus 1.With such a definition, 
a X�s supporting tuple is a tuple that could have created X 
during its propagation. 

Moreover, we will say that X is in a safe-state if it has 
a supporting tuple, or if it is the source of the distributed 
tuple. We will say that a tuple is not in a safe-state if the 
above condition does not apply. 

Each local tuple can subscribe to the income or the 
removal of other tuples belonging to its same type in its 
one-hop neighborhood. This means, for example, that the 
tuple depicted in figure 12-bottom, installed on node F 
and having value 5 will be subscribed to the removal of 
tuples in its neighborhood (i.e. nodes E and G).  

Upon a removal, each tuple reacts by checking if it is 
still in a safe-state. In the case a tuple is in a safe-state, 
the tuple the removal has not any effect -  see later -. In 
the case a tuple is not in a safe state, it erases itself from 
the local tuple space. This eventually cause a cascading 
tuples� deletion until a safe-state tuple can be found, or 
the source is eventually reached, or all the tuples in that 
connected sub-network are deleted (as in the case of 
figure 12-top). When a safe-state tuple observes a 
deletion in its neighborhood it can fill that gap, and reacts 
by propagating to that node. This is what happens in 
figure 12-bottom, safe-state tuple installed on mode C 
and having value 3 propagates a tuple with value 4 to the 
hole left by tuple deletion (node D). It is worth noting 
that this mechanism is the same enforced when a new 
peer is connected to the network. 

Similar considerations applies with regard to tuples� 
arrival: when a tuple sense the arrival of a tuple having 
value lower than its supporting tuple, it means that, 
because of nodes� mobility, a short-cut leading quicker to 
the source happened. Also in this case the tuple must 
update its value to take into account the new topology. 

So, what is the impact of a local change in the network 
topology in real scenarios?  

To answer these questions we exploited the 
implemented TOTA simulator, being able to derive 
results depicted in figure 13. 

The graphs show results obtained by more than 100 
experiments, conducted on different networks. We 
considered networks having an average density (i.e. 
average number of nodes directly connected to an other 
node) of 5.7, 7.2 and 8.8 respectively (these numbers 
come from the fact that in our experiments they 
correspond to 150, 200, 250 peers, respectively). In each 
network, a tuple, incrementing its content at every hop, 
had been propagated. Nodes in the network move 
randomly, continuously changing the network topology. 
The number of messages sent between peers to keep the 
tuple shape coherent had been recorded. 

Figure 13-a shows the average number of messages 
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sent by peers located in an x-hop radius from the origin 
of the topology change. Figure 13-b shows the same 
values, but in these experiments only the source of the 
tuple moves, changing the topology. Figure 13-c shows 
the percentage of topology changes, happened during the 
experiments, that required a specific number of messages 
to be dealt with (see caption).  
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Figure 13: Experimental results: locality scopes 
in tuple�s maintenance operations emerge in a 
network without predefined boundaries. (a) 
topology changes are caused by random peer 
movements. (b) topology changes are caused by 
the movement of the source peer. (c) Number of 
topology changes, happened during the 
experiments, that required a specific number of 
messages to be dealt with (e.g. in 27% of the 
diamond experiment, the topology change has 
been fixed with about 1.5 messages being 
exchanged) 

The most important consideration we can make 
looking at those graphs, is that, upon a topology change, 
a lot of update operations will be required near the source 
of the topology change, while only few operations will be 
required far away from it. This implies that, even if the 
TOTA network and the tuples being propagated have no 
artificial boundaries, the operations to keep their shape 
consistent are strictly confined within a locality scope 
(figure 13-a-b).  

Moreover, figure 13-c, shows that the topology change 
that are likely to involve large-scale update are much less 
frequent than operations requiring only local 
rearrangements. This fact supports the feasibility of the 
TOTA approach in terms of its scalability. In fact, this 
means that, even in a large network with a lot of nodes 
and tuples, we do not have to continuously flood the 
whole network with updates, eventually generated by 
changes in distant areas of the network. Updates are 
almost always confined within a locality scope from 
where they took place. 

Other experiments, related to test the scalability of the 
system in other situations, are in our research agenda. For 
instance, it will be particularly interesting to see what 
happens when a large portion of the network topology 
changes, such as in networks of TOTA nodes embedded 
in vehicle or carried on by a person). 

6. Related Works 
A number of recent proposals address the problem of 
defining supporting environments for the development of 
adaptive, dynamic, context-aware distributed 
applications, suitable for pervasive computing. 

Smart Messages (SM) [3], rooted in the area of active 
networks, is an architecture for computation and 
communication in large networks of embedded systems. 
Communication is realized by sending �smart messages� 
in the network, i.e., messages which include code to be 
executed at each hop in the network path. SM shares with 
TOTA, the general idea of putting intelligence in the 
network by letting messages (or tuples) execute hop-by-
hop small chunk of code to determine their propagation. 
The main difference between SM and TOTA is that in 
SM messages tend to be used as light-weight mobile 
agents, roaming across the network, and performing 
different tasks. In TOTA tuples tend to form self-
maintained distributed data structures guiding other 
agents in their task.    

The L2imbo model, proposed in [6], is based on the 
notion of distributed tuple spaces augmented with 
processes (Bridging Agents) in charge of moving tuples 
form one space to another. Bridging agent can also 
change the content of the tuple being moved for example 
to provide format conversion between tuple spaces. The 
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main differences between L2imbo and TOTA are that in 
L2imbo, tuples are conceived as �separate� entities and 
their propagation is mainly performed to let them being 
accessible from multiple tuple spaces. In TOTA, tuples 
form distributed data structure and their �meaning� is in 
the whole data structure rather than in a single tuple. 
Because of this conceptual difference, tuples� 
propagation is defined for every single tuple in TOTA, 
while is defined for the whole tuple space in L2imbo. 

Lime [14] exploits transiently tuple spaces as the basis 
for interaction in dynamic network scenario. Each mobile 
device, as well as each network nodes, owns a private 
tuple space. Upon connection with other devices or with 
network nodes, the privately owned tuple spaces can 
merge in a federated tuple space, to be used as a common 
data space to exchange information. TOTA subsumes and 
extend the Lime model. It is possible, via specific 
propagation rules, to have tuples distributed only in a 
local neighborhood, so as to achieve the same 
functionalities of a locally shared tuple space of Lime. In 
addition, propagation rules enable much more elaborated 
kinds of information sharing other than simple local 
merging of information. Similar considerations may 
apply with regard to other proposals for shared 
distributed data structures (e.g., the XMIDDLE [12]). 

7. Conclusions and Future Works 
Several issues are still to be investigated to make TOTA 
a practically useful framework for the development of 
pervasive applications. In particular, a criticism that can 
apply to TOTA is the lack of an underlying general 
methodology, enabling engineers to map a specific 
coordination policy into the corresponding definition of 
tuples and of their shape. Personally, we believe that a 
great number of coordination patterns can be easily 
engineered in TOTA even in the absence of a general 
methodology (e.g., biological systems such as ant-
colonies can be sources of several ready-to-work 
solutions [2]). Nevertheless, the definition of such a 
methodology � which is still lacking in all of the related 
approaches based on similar self-organization principles 
� would be definitely of help and would possibly make 
TOTA applicable to a wider class of distributed 
coordination problems. 
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