
Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

Programming Pervasive and Mobile Computing Applications
with the TOTA Middleware

Marco Mamei, Franco Zambonelli

DISMI � Università di Modena e Reggio Emilia � Via Allegri 13 � Reggio Emilia � ITALY
{ mamei.marco, franco.zambonelli }@unimo.it

Abstract
Pervasive computing calls for suitable middleware and
programming models to deal with large software
systems dived in dynamic mobile network environments.
Here we present the programming model of TOTA
(�Tuples On The Air�), a novel middleware for
supporting adaptive context-aware activities in
pervasive computing scenarios. The key idea in TOTA
is to rely on spatially distributed tuples, propagated
across a network on the basis of application-specific
rules, for both representing contextual information and
supporting uncoupled interactions between application
components. As shown with the help of a case study
scenario, TOTA promotes a simple programming model
and can effectively facilitate access to distributed
information, navigation in complex networks, and
achievement of complex coordination tasks in a fully
distributed and adaptive way.

1. Introduction
Computing is becoming intrinsically pervasive and
mobile [15]. Computer-based systems are going to be
embedded in all our everyday objects and in our everyday
environments. These systems will be typically
communication enabled, and capable of interacting with
each other in the context of complex distributed
applications, e.g., to support our cooperative activities
[13], to monitor and control our environments [3], and to
improve our interactions with the physical world [9].
Also, since most of the embeddings will be intrinsically
mobile, as a car or a human, distributed software
processes and components (from now on, we adopt the
term �agents� to generically indicate the active
components of a distributed application) will have to
effectively interact with each other and orchestrate their
activities despite the network and environmental
dynamics induced by mobility.

The above scenario introduces peculiar challenging
requirements in the development of distributed software
systems: (i) since new agents can leave and arrive at any

time, and can roam across different environments,
applications have to be adaptive, and capable of dealing
with such changes in a flexible and unsupervised way; (ii)
the activities of the software systems are often contextual,
i.e., strictly related to the environment in which the
systems execute (e.g., a room or a street), whose
characteristics are typically a priori unknown, thus
requiring to dynamically enforce context-awareness; (iii)
the adherence to the above requirements must not clashes
with the need of promoting a simple programming model
possibly requiring light supporting infrastructures.

Unfortunately, current practice in distributed software
development, as supported by currently available
middleware infrastructures, is unlikely to effectively
address the above requirement: (i) application agents are
typically strictly coupled in their interactions (e.g., as in
message-passing models and middleware), thus making it
difficult to promote and support spontaneous
interoperations; (ii) agents are provided with either no
contextual information at all or with only low-expressive
information (e.g., raw local data or simple events),
difficult to be exploited for complex coordination
activities; (iii) due to the above, the results is usually in
an increase of both application and supporting
environment complexity.

The approach we propose in this paper builds on the
lessons of uncoupled coordination models like event-
based [5] and tuple space programming [4] and aims at
providing agents with effective contextual information
that � while preserving the lightness of the supporting
environment and promoting simplicity of programming �
can facilitate both the contextual activities of application
agents and the definition of complex distributed
coordination patterns. Specifically, in the TOTA
(�Tuples On The Air�) middleware, all interactions
between agents take place in a fully uncoupled way via
tuple exchanges. However, there is not any notion like a
centralized shared tuple space. Rather, tuples can be
�injected� into the network from any node and can
propagate and diffuse accordingly to tuple-specific
propagation patterns. The middleware takes care of
propagating the tuples and of adapting their shape

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 2

accordingly to the dynamic changes that can occur in the
network (as due by, e.g., mobile or ephemeral nodes).
Agents can exploit a simple API to define and inject new
tuples in the network and to locally sense both tuples and
events associated with changes in the tuples� distributed
structures (e.g., arrival and dismissing of tuples).

2. Motivations and Case Study
To sketch the main motivations behind TOTA, we
introduce a simple case study scenario and try to show
the inadequacy of traditional approaches in this context.

2.1. Case Study Scenario
Let us consider a big museum, and a variety of tourists
moving within it. We assume that each of them is
provided with a wireless-enabled computer assistant (e.g.,
a PDA). Also, it is realistic to assume the presence, in the
museum, of a densely distributed network of computer-
based devices, associated with rooms, corridors, art
pieces, alarm systems, climate conditioning systems, etc.
Such devices can be exploited for both the sake of
monitoring and control, as well as for the sake of
providing tourists with information helping them to
achieve their goals. For tourists, such goals may include
retrieving information about art pieces, effectively
orientate themselves in the museum, and meeting with
each other (in the case of organized groups). In the
following, we will concentrate on two specific
representative problems: (i) how tourists can gather and
exploit information related to an art piece they want to
see; (ii) how tourists can meet in the museum.

In any case, whatever specific application problem has
to be addressed in the above scenario, it should meet the
requirements identified in the introduction. (i) Adaptivity:
tourists move in the museum. They are likely to come and
go at any time. Art pieces can be moved around the
museum during special exhibitions or during
restructuring works. Thus, the topology of the overall
network can change with different dynamics and for
different reasons, all of which have to be preferably faced
without human intervention. (ii) Context-awareness: as
the environment (i.e., the museum map and the location
of art pieces) may not be know a priori (tourists can be
visiting the museum for the first time), and it is also likely
to change in time (due to restructuring and exhibitions),
application agents should be dynamically provided with
contextual information helping their users to move in the
museum and to coordinate with each other without
relying on any a priori information; (iii) Simplicity: PDAs
may have limited battery life, as well as limited hardware
and communication resources. This may require a light
supporting environment and the need for applications to
achieve their goal with limited computational and

communication efforts.
We emphasize the above sketched scenario exhibits

characteristics that are typical of a larger class of
pervasive computing scenarios. Among the others, traffic
management and manufacturing control systems [9],
mobile robots and sensor networks [15]. Therefore, also
all our considerations are of a more general validity,
besides the addressed case study.

2.2. Inadequacy of Traditional Approaches
Most coordination models and middleware used so far in
the development of distributed applications appear
inadequate in supporting coordination activities in
pervasive computing scenarios.

In direct communication models, a distributed
application is designed by means of a group of agents
that are in charge of communicating with each other in a
direct and explicit way. Systems like Jini [7], as well as
FIPA agent-based systems [1], support such a direct
communication model. One problem of this approach is
that agents, by having to interact directly with each other,
can hardly sustain the openness and dynamics of
pervasive computing scenarios: explicit and expensive
discovery of communication partners - typically
supported by some sort of directory services - has to be
enforced. Also, agents are typically placed in a �void�
space: the model, per se, does not provide any contextual
information, agents can only perceive and interact with
(or request services to) other agents, without any higher
contextual abstraction. In the case study scenario, tourists
have to explicitly discover the location of art pieces, or of
other tourists. Also, to orchestrate their movements,
tourist must explicitly keep in touch with each other and
agree on their respective movements via direct
negotiation. These activities require notable
computational and communications efforts and typically
end up with ad-hoc solutions � brittle, inflexible, and
non-adaptable � for a contingent coordination problem.

Shared data-space models exploit localized data
structures in order to let agents gather information and
interact and coordinate with each other. These data
structures can be hosted in some centralized data-space
(e.g., tuple space), as in EventHeap [8], or they can be
fully distributed over the nodes of the network, as in
MARS [4]. In these cases, agents are no longer strictly
coupled in their interactions, because tuple spaces
mediate interactions and promote uncoupling. Also, tuple
spaces can be effectively used as repositories of local,
contextual information. Still, such contextual information
can only represent a strictly local description of the
context that can hardly support the achievement of global
coordination tasks. In the case study, one can assume that
the museum provides a set of data-spaces, storing

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 3

information such as nearby art pieces as well as messages
left by the other agents. Tourists can easily discover what
art pieces are nearby them, but to locate a farther art
piece they should query either a centralized tuple space
or a multiplicity of local tuple spaces, and still they
would have to internally merge all the information to
compute the best route to the target. Similarly, tourists
can build an internal representation of the other people
distribution by storing tuples about their presence and by
accessing several distributed data-spaces. However, the
availability of such information does not free them from
the need of negotiating with each other to orchestrate
movements. In other words, despite the availability of
some local contextual information, a lot of explicit
communication and computational work is still required
to the application agents to effectively achieve their tasks.

In event-based publish/subscribe models, a distributed
application is modeled by a set of agents interacting with
each other by generating events and by reacting to events
of interest. Typical infrastructures rooted on this model
are: Siena[5] and Jini Distributed Events [7]. Without
doubt, an event-based model promotes both uncoupling
(all interactions occurring via asynchronous and typically
anonymous events) and a stronger context-awareness:
agents can be considered as embedded in an active
environment able of notifying them about what is
happening which can be of interest to them (as
determined by selective subscription to events). In the
case study example, a possible use of this approach
would be to have each tourist notify its movements across
the building to the rest of the group. Notified agents can
then easily obtain an updated picture of the current group
distribution in a simpler and less expensive way than
required by adopting shared data spaces. However, this
approach still relies on agents for negotiating the
coordinated movements and does not alleviate their
computational tasks (i.e., in the case study, tourists still
have to explicitly negotiate their movements).

3. The Tuples on the Air Approach
The definition of TOTA is mainly driven by the above
considerations. It gathers concepts from both tuple space
approaches [4, 8] and event-based ones [5, 7] and
extends them to provide agents with a unified and
flexible mechanism to deal with both context
representation and components� interaction.

In TOTA, we propose relying on distributed tuples
for both representing contextual information and enabling
uncoupled interaction among distributed application
components. Unlike traditional shared data space models,
tuples are not associated to a specific node (or to a
specific data space) of the network. Instead, tuples are
injected in the network and can autonomously propagate

and diffuse in the network accordingly to a specified
pattern. Thus, TOTA tuples form a sort of spatially
distributed data structure able to express not only
messages to be transmitted between application
components but, more generally, some contextual
information on the distributed environment.

To support this idea, TOTA is composed by a peer-
to-peer network of possibly mobile nodes, each running a
local version of the TOTA middleware. Each TOTA
node holds references to a limited set of neighbor nodes.
The structure of the network, as determined by the
neighborhood relations, is automatically maintained and
updated by the nodes to support dynamic changes,
whether due to nodes� mobility or to nodes� failures. The
specific nature of the network scenario determines how
each node can found its neighbors: e.g., in a MANET
scenario, TOTA nodes are found within the range of their
wireless connection.

Upon the distributed space identified by the dynamic
network of TOTA nodes, each component is capable of
locally storing tuples and letting them diffuse through the
network. Tuples are injected in the system from a
particular node, and spread hop-by-hop accordingly to
their propagation rule. In fact, a TOTA tuple is defined in
terms of a �content�, and a �propagation rule�. T=(C,P).
The content C is an ordered set of typed fields
representing the information carried on by the tuple. The
propagation rule P determines how the tuple should be
distributed and propagated across the network. This
includes determining the �scope� of the tuple (i.e. the
distance at which such tuple should be propagated and
possibly the spatial direction of propagation) and how
such propagation can be affected by the presence or the
absence of other tuples in the system. In addition, the
propagation rules can determine how tuple�s content
should change while it is propagated. In fact, tuples are
not necessarily distributed replicas: by assuming different
values in different nodes, tuples can be effectively used to
build a distributed overlay data structure expressing some
kind of contextual and spatial information (see figure 1).
So, unlike event based models, propagation of tuples is
not driven by a publish-subscribe schema, but it is
directly encoded in tuples� propagation rule and, unlike
an event, can change its content during propagation.

The spatial structures induced by tuples propagation
must be maintained coherent despite network dynamism
(see figure 1). To this end, the TOTA middleware
supports tuples propagation actively and adaptively: by
constantly monitoring the network local topology and the
income of new tuples, the middleware automatically re-
propagates tuples as soon as appropriate conditions
occur. For instance, when new nodes get in touch with a
network, TOTA automatically checks the propagation
rules of the already stored tuples and eventually

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 4

propagates the tuples to the new nodes. Similarly, when
the topology changes due to nodes� movements, the
distributed tuple structure automatically changes to
reflect the new topology. For instance, figure 1 shows
how the structure of a distributed tuple can be kept
coherent by TOTA in a MANET scenario, despite
dynamic network reconfigurations.

T O T A N e tw o r k

0

1

1

1

2

3

2

3

2

2

3

3

2

4

2

2

T O T A N e t w o r k

0

1

2

3

4

4

3

4

4

1

2

2

2

3

1

3

Figure 1: (Top) the general scenario of TOTA:
application components live in an environment
in which they can inject tuples that
autonomously propagate and sense tuples
present in their local neighborhood. The
environment is realized by means of a peer-to-
peer network in which tuples propagates by
means of a multi-hop mechanism. (Bottom)
when the tuple source moves, tuples are
updated to take into account the new topology

From the application components� point of view,
executing and interacting basically reduces to inject
tuples, perceive local tuples and local events, and act
accordingly to some application-specific policy. Software
components on a TOTA node can inject new tuples in the
network, defining their content and their propagation
rule. They have full access to the local content of the
middleware (i.e., of the local tuple space), and can query
either the local tuple space or the one-hop neighbor tuple
spaces to check for the presence of specific tuples. In
addition, components can be notified of events (e.g.,
changes in tuple space content) occurring either locally or
in the one-hop neighborhood.

3.1. The Case Study in TOTA
Let us consider the case study introduced in Section 2.

We recall that we assume that the museum is properly
instrumented with a reasonably dense number of wireless
TOTA peers, e.g., associated with museum rooms and
corridors as well as with art pieces, and that tourists are
provided with wireless enabled PDAs running the TOTA
middleware. All these devices, by connecting in ad-hoc
network, define the structure of the TOTA space.
Moreover, we make the following assumptions: (i)
devices are provided with localization mechanisms
enabling them to know neighbors� coordinates in a
private local coordinate frame. (ii) The rough topology of
the ad-hoc network being formed by TOTA devices
resembles the museum floor-plan. This means that there
are not network links between physical barriers (like
walls). To achieve this property, we suppose that either
the devices are able to detect and drop those network
links crossing physical barriers (e.g. relying on signal
strength attenuation or some other sensors installed on
the device) or that the museum building is pre-installed
with a network backbone � reflecting its floor-plan � and
that all the nodes can connect only to the backbone. And
there are not long-range, wired backbones in the network.
To achieve this property it is possible to rely on the
natural physical attenuation of radio-based signals (in
wireless communication), or to constrain the addressable
space of wired nodes, to let them able to talk only with
close peers.

Coming back to the case study, the first problem we
face is that of enabling a tourist to discover the presence
and the location of a specific art piece. TOTA makes this
very simple, we could consider that art pieces can sense
the income of tuples propagated by tourists � and
describing the art piece they are looking for � and are
programmed to react to these events by propagating
backward to the requesting tourists a tuple containing
their own location information. In particular, Query and
Answer tuples could be defined as described in figure 2.
Since TOTA keeps the tuple shape coherent despite node
movements, Query tuples create gradients leading to their
sources even if the sources move. Thus Answer tuples
can reach a tourist while he/she is in movement.

The second problem we consider involves a �meeting�
service whose aim is to help a group of tourists to find
and move towards the most suitable room for a meeting.
Even if several different policies can be though related to
how a group of tourists should meet, here we will
concentrate on having a group of tourists that wants to
meet in the room that is between them (their
�barycenter�). To this purpose, each tourist involved in
the meeting can inject the Meeting tuple described in
figure 2. Then, any tourist can follow downhill the tuple
propagated by the farther other tourist in the group. In
this way all tourists �fall� towards each other, and they
meet in their barycenter room. It is interesting to notice,

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 5

that this room is evaluated dynamically and the process
takes into account unexpected situations (e.g. crowded
areas). So if some tourists encounter crowd in their path
to the meeting room, the meeting room is automatically
changed to a room closer to these unlucky tourists.

Query tuple
C= (description , distance)
P=(propagate to all peers hop by hop, increasing the

�distance� field by one at every hop)
Answer tuple
C = (description, location, distance)
P = (propagate following downhill the �distance� of

the associated query tuple, incrementing distance
value by one at every hop)

Meeting tuple
C= (tourist_name, distance)
P=(propagate to all peers hop by hop, increasing the

�distance� field by one at every hop)

Figure 2: General description of the tuples
involved in the case study scenario: Query
Tuple, Answer Tuple and Meeting Tuple

3.2. Implementation
From an implementation point of view, we developed a
first prototype of TOTA running on Compaq IPAQs,
running Linux (Familiar distribution) and equipped with
802.11b and Java 2 Micro Edition (J2ME, CDC,
Personal profile). IPAQs connect locally in the MANET
mode (i.e. without requiring access points) creating the
skeleton of the TOTA network. Moreover, we have
implemented a simulator to analyze TOTA behavior in
presence of hundreds of nodes. The simulator, developed
in Java, enables examining TOTA behavior in a MANET
scenario, in which nodes topology can be rearranged
dynamically either by a drag and drop user interface or
by autonomous nodes� movements. The strength of our
simulator is that, by adopting well-defined interfaces
between the simulator and the application layers, the
same code �installed� on the emulated devices can be
installed on real devices. This allow to test applications
first in the simulator, then to upload them directly in a
network of real devices. Further details on the
implementation can be found in [10].

4. TOTA Programming
When developing applications upon TOTA, one has
basically to know: (i) what are the primitive operations to
interact with the middleware; (ii) how to specify tuples
and their propagation rule; (iii) how to exploit the above
to code agents.

public void inject (TotaTuple tuple);
public Vector read (Tuple template);
public Vector readOneHop (Tuple template);
public Tuple keyrd (Tuple template);
public Vector keyrdOneHop(Tuple template);
public Vector delete (Tuple template);
public void subscribe (Tuple template,
ReactiveComponent comp, String rct);
public void unsubscribe (Tuple template,
ReactiveComponent comp);

Figure 3: TOTA API

public class ToyAgent implements AgentInterface
{
 private TotaMiddleware tota;
 /* agent body */
 public void start() {
 /* create a tuple and inject it*/
 FooTuple foo = new FooTuple(“Hello World!”);
 tota.inject(foo);
 /* define a template tuple */
 FooTemplTuple t = new FooTempTuple();
 /* read local tuples matching the template */
 Vector v = tota.read(t);
 /* subscribe to changes in tuples matching t*/
 tota.subscribe(t,this,””);
 }
 /* code of the reaction to the subscrption */
 public void react(String reaction, String
event) { System.out.pritnln(event);}}

Figure 4: Example code of a ToyAgent accessing
the TOTA API

4.1. TOTA Primitives
TOTA is provided with a simple set of primitive
operations to interact with the middleware (see figure 3).
inject is used to inject the tuple passed as an argument in
the TOTA network. Once injected the tuple starts
propagating accordingly to its propagation rule
(embedded in the tuple definition). The read primitive
accesses the local TOTA tuple space and returns a
collection of the tuples locally present in the tuple space
and matching the template tuple passed as parameter. The
readOneHop primitive returns a collection of the tuples
present in the tuple spaces of the node�s one-hop
neighborhood and matching the template tuple. Each
TOTA distributed tuple is also marked with an unique id
(invisible at the application level) enabling a fast access
to the tuple, disregarding its content. The keyrd and
keyrdOneHop methods serve to this purpose, they look
for tuples with the same id of the tuple passed as
argument. The typical usage of these methods is to
evaluate how a specific tuple has changed in the
neighborhood. Specifically in the case of tuples with a
numeric content, it allows to evaluate the tuple�s gradient.
The delete primitive extracts from the local middleware
all the tuples matching the template and returns them to

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 6

the invoking agent. In addition, subscribe and
unsubscribe primitives are defined to handle events.
These primitives rely on the fact that any event occurring
in TOTA (including: arrivals of new tuples, connections
and disconnections of peers) can be represented as a
tuple. Thus: the subscribe primitive associates the
execution of a reaction method in the agent in response to
the occurrence of events matching the template tuple
passed as first parameter. Specifically, when the a
matching event happens, the middleware invokes on the
agent a special react method passing as parameters, the
reaction string and the matching event. The unsubscribe
primitives removes matching subscriptions

The simple application agent in figure 4 clarifies the
above concepts.

4.2. Specifying Tuples
Relying on an object oriented methodology, TOTA tuples
are actually objects: the object state models the tuple
content, while the tuple�s propagation has been encoded
by means of a specific propagate method.
When a tuple is injected in the network, it receives a
reference to the local instance of the TOTA middleware,
then its code is actually executed (the middleware
invokes the tuple�s propagate method) and if during
execution it invokes the middleware move method, the
tuple is actually sent to all the one-hop neighbors, where
it will be executed recursively. During migration, the
object state (i.e. tuple content) is properly serialized to be
preserved and rebuilt upon the arrival in the new host.

Following this schema, we have defined an abstract
class TotaTuple, that provides a general framework for
tuples programming (see figure 5).

abstract class TotaTuple {
protected TotaInterface tota;
/* the state is the tuple content */
…
/* this method inits the tuple, by giving a
reference to the current TOTA middleware */
public void init(TotaInterface tota) {
 this.tota = tota; }
/* this method codes the tuple actual actions */
public abstract void propagate();
/* this method enables the tuple to react to
happening events… see later in the article */
public void react(String reaction, String event)
 {}}

Figure 5: The structure of the TotaTuple class

It is worth noting that a tuple is not thread by its own,
it is actually executed by the middleware, that runs the
tuple�s init and propagate methods. The point to
understand is that when the middleware has finished the
execution of the tuple�s methods, the tuple (on that node)
becomes a �dead� data structure eventually stored in the

middleware local tuple space.
Tuples, however, must remain active even after the

middleware has run their code. This is fundamental
because their maintenance algorithm � see Section 5 -
must be executed whenever the right conditions appear
(e.g. a new peer has been connected). To this end, tuples
can place subscriptions, to the TOTA event engine as
provided by the standard TOTA API. These subscriptions
let the tuples remain �alive�, being able to execute upon
triggering conditions.

This model for tuples gives the maximum flexibility.
However, the problem is that it is too complex, and we do
not foster the idea of having the programmer to write
tuples code form scratch. For this reason, we have
developed a tuples� class hierarchy from which the
programmer can inherit to create custom tuples without
worrying about most of all the intricacies of dealing with
tuple propagation and maintenance.

The only child of the TotaTuple class, is the class
StructureTuple. This class is a template to create
distributed data structures over the network. However,
StructureTuples are NOT maintained by the middleware.
This means that if the topology of the network changes
the tuple local values are left untouched. This class
inherits from TotaTuple and implements the superclass
method propagate (see figure 6).

public final void propagate() {
 if(decideEnter()) {
 boolean prop = decidePropagate();
 changeTupleContent();
 this.makeSubscriptions();
 tota.store(this);
 if(prop) tota.move(this); }}

Figure 6: Standard implementation of the
propagate method in the StructureTuple class

The class StructureTuple implements the methods:
decideEnter, decidePropagate, changeTupleContent and
makeSubscriptions so as to realize a breadth first,
expanding ring propagation. The result is simply a tuple
that floods the network without changing its content.
Specifically, when a tuple arrives in a node (either
because it has been injected or it has been sent from a
neighbor node) the middleware executes the decideEnter
method that returns true if the tuple can enter the
middleware and actually execute there, false otherwise.
The standard implementation returns true if the
middleware does not already contain that tuple.

If the tuple is allowed to enter the method
decidePropagate is run. It returns true if the tuple has to
be further propagated, false otherwise. The standard
implementation of this method returns always true,
realizing a tuple�s that floods the network being
recursively propagated to all the peers.

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 7

The method changeTupleContent change the content
of the tuple. The standard implementation of this method
does not change the tuple content.

The method makeSubscriptions allows the tuple to
place subscriptions in the TOTA middleware. In this way
the tuple can react to events even when they happen after
the tuple completes its execution. The standard
implementation does not subscribe to anything.

After that, the tuple is inserted in the TOTA tuple
space by executing tota.store(this). Then, if the
decidePropagate method returned true, the tuple is
propagated to all the neighbors via the command
tota.move(this). Note that these last two commands are
not in the TOTA API, since their access is restricted to
tuples only.

The tuple will eventually reach neighboring nodes,
where it will be executed again. It is worth noting that the
tuple will arrive in the neighboring nodes with the content
changed by the last run of the changeTupleContent
method.

Programming a TOTA tuple to create a distributed
data structure basically reduces at inheriting from the
above class and overloading the four above methods to
customize the tuple behavior. Here in the following, we
present two examples to show the expressiveness of the
introduced framework.

A NMGradient tuple creates a tuple that floods the
network in a breadth-first way and have an integer hop-
counter that is incremented by one at every hop (see
figure 7). To code this tuple one has basically to:
• place the integer hop counter in the object state
• overload changeTupleContent, to let the tuple

change the hop counter at every propagation step
• overload decideEnter so as to allow the entrance not

only if in the node there is not the tuple yet � as in
the base implementation -, but also if there is the
tuple with an higher hop-counter. This allows to
enforce the breadth-first propagation assuring that
the hop-counter truly reflects the hop distance from
the source.

A DownhillTuple creates a tuple that follows another
NMGradientTuple downhill (see figure 8). To code this
tuple one has basically to:
• overload the decideEnter method to let the tuple

enter only if the value of the NMGradientTuple in
the node is less that the value on the node from
which the tuple comes from.

The rest of the hierarchy has been built in the same
way: by overloading the methods controlling tuple
propagation. Programmers can inherit from the hierarchy
to further customize their tuple�s propagation. The only
point they have to remember is to call the superclass
implementation before actually writing their own
overload, to be sure that code we developed in the

hierarchy is actually executed. In the following we give a
brief overview of the rest of the hierarchy.

public class NMGradient extends StructureTuple {
 public int hop = 0;

public boolean decideEnter() {
 super.decideEnter();
 NMGradient prev =(NMGradient)tota.keyrd(this);
 return (prev == null ||

 prev.hop > (this.hop + 1));
}
protected void changeTupleContent() {
 super.changeTupleContent();
 hop++;}}

Figure 7: Tuple example: NMGradient class

public class DownhillTuple extends
StructureTuple {
 public int oldVal = 9999;
 NMGradientTuple trail;

 public DownhillTuple(String toFollow) {
 trail = new NMGradientTuple();
 trail.setContent(toFollow);}

 public boolean decideEnter() {
 super.decideEnter();
 int val = getGradientValue();
 if(val < oldVal) {
 oldVal = val;
 return true;
 }
 else
 return false;}

 /* this method returns the minimum hop-value of
the NMGradient tuples matching the tuple to be
followed in the current node */
 private int getGradientValue() {
 Vector v = tota.read(trail);
 int min = 9999;
 for(int i=0; i<v.size(); i++) {
 NMGradientTuple gt =
 (NMGradientTuple)v.get(i);
 if(min > gt.hop)
 min = gt.hop;
 }
 return min;}}

Figure 8: Tuple example: DownhillTuple class

MessageTuples are used to create messages that are
not stored in the local tuple spaces, but just flow in the
network. The basic structure is the same as
StructureTuple, but a default subscription is in charge to
erase the tuple after some time passed.

HopTuples create distributed data structure that are
maintained by the TOTA middleware, to reflect changes
in the network topology. Basically this class overloads
the empty makeSubscriptions method of the
StructureTuple class, to let these tuples react to changes

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 8

in the topology, by adjusting their values to always be
consistent with the hop-distance form the source. It is
worth noting that if the NMGradient tuple would have
been inherited from HopTuples the resulting tuple would
have been adaptive to source movements.

MetricTuples and SpaceTuples rely on spatial
distances rather than hop-distances. The assumption here
is to have radar-like location devices installed on nodes
able to spatially localize neighboring (directly accessible)
nodes. In other words, each device must be able to create
a local private coordinate system by localizing
neighborhood nodes. The basic implementation of these
tuples, from which to inherit, is a tuple that combines
local coordinate systems, to create a shared coordinate
system, with the center in the node that injected the tuple.

A detailed explanation of the whole class hierarchy is
outside the scope of this paper. More detailed
information can be found in [11].

4.3. Programming the Case Study
It is rather easy now to program the agents required in
our case study. The tuples they will use are the
NMGradient and the DownhillTuple presented in the
previous section (actually, the very first line of
NMGradient should be changed to inherit from
HopTuple).

With regard to the problem of gathering contextual
information. We consider that art pieces (represented by
ArtAgen, see figure 9) are programmed in order to sense
the income of query tuples propagated by tourists
(represented by QueryAgent, see figure 10) and to react
by propagating backward to the requesting tourists their
location information.

More in detail, the QueryAgent performs just two
simple operations: it injects in the network a tuple of
class NMGradient. Then it subscribes to the income of all
the DownhillTuples (which are assumed to describe an
art piece and its location) having as the first field �Monna
Lisa�, the agent associated to the Monna Lisa painting is
expected to generate. The associated reaction
displayReaction is executed on receipt of such tuple to
print out the content of the received event tuple.

Correspondently, each ArtAgent is identified by a
description, representing the art piece and its behavior is
to subscribe to the tuples querying for itself. The reaction
to such an event is to inject a DownhillTuple that simply
follows backward the query tuple to reach the tourist
agent issuing the request.

With regard to the meeting application. The algorithm
followed by meeting agents (see figure 11) is very
simple: agents have to determine the farthest peer, and
then move by following downhill that peer�s presence
tuple. In this way agents will meet in their barycenter.

public class ArtAgent implements AgentInterface
{
 private TotaMiddleware tota;
 /* piece of art description and location */
 private String description, location;
 /* agent body */
 public void start() {
 /* subscribe to the query */
 NMGradient query = new NMGradient();
 query.setContent(description);
 tota.subscribe(query,this,”answerQuery”);
 }
 /*the reaction injects the answer tuple. The

answer will be coded by a DownhillTuple
following the query. The query is here
referenced as OneHopIncTuple event */

 public void react(String reaction, String
event) {
 NMGradient query = Tuple.deserialize(event);
 DownhillTuple answer = new
DownhillTuple(query.content);
 answer.setContent(description+” ”+location);
 tota.inject(answer); }}

Figure 9: Agent example: ArtAgent

public class QueryAgent implements
AgentInterface {
 private TotaMiddleware tota;
 /* agent body */
 public void start() {
 /* inject the query */
 NMGradient query = new NMGradient();
 query.setContent(“Monna Lisa”);
 tota.inject(query);
 /* subscribe to the answer: the answer will be

conveyed in a DownhillTuple, see 6.1 */
 DownhillTuple answer = new DownhillTuple();
 answer.setContent(“Monna Lisa *”);
 tota.subscribe(answer,this,”display”); }
 /* the reaction simply prints out the result */
 public void react(String reaction, String
event) {
 if(reaction.equalsIgnoreCase("display ")) {
 System.out.pritnln(“Monna Lisa:“ + event); }}

Figure 10: Agent example: QueryAgent

public class MeetingAgent extends Thread
implements AgentInterface {
 private TotaMiddleware tota;
 …
 public void run() {
// inject meeting tuple to participate meeting
 NMGradient mt = new NMGradient();
 mt.setContent(peer.toString());
 tota.inject(mt);
 while(true) {
 /* read other agents’ meeting tuples */
 NMGradient coordinates = new NMGradient();
 Vector v = tota.read(coordinates);
 /* evaluate the gradients and select the peer

to which the gradient goes downhill */
 GenPoint destination = getDestination(v);
 /* move downhill following meeting tuple */
 peer.move(destination); } }…}

Figure 11: Agent example: MeetingAgent

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 9

5. Performances and Experiments
One of the biggest concerns regarding our model is about
scalability and performances. How much burden is
requested to the system to maintain tuples?

Due to page limit, we will concentrate in this section
to HopTuples only, since they are the ones actually used
in the paper�s case study and are the most difficult to be
maintained. Further details on these topics can be found
in [11]. HopTuples� maintenance operations are required
upon a change in the network topology, to have the
distributed tuples reflect the new network structure. This
means that maintenance operations are possibly triggered
whenever, due to nodes� mobility or failures, new links in
the network are created of removed. Because of
scalability issues, it is fundamental that the tuples�
maintenance operations are confined to an area
neighboring the place in which the topology had changed.
This means that, if for example, a device in a MANET
breaks down (causing a change in the network topology)
only neighboring devices should change their tuples�
values. The size of this neighborhood is not fixed and
cannot be predicted a-priori, since it depends on the
network topology. For example, if the source of a tuple
gets disconnected from the rest of the network, the
updates must inevitably involve all the other peers in the
network (that must erase that tuple form their
repositories, see figure 12-top). However, especially for
dense networks, this is unlikely to happen, and usually
there will be alternative paths keeping up the tuple shape
(see figure 12-bottom).

A B

1 4 5 6 7 2 3

3

1 4 5 6 7 2
3

4

C D G F E

A H G F

D

C

EB

Figure 12: The size of the update neighborhood
depends on the network topology. Here is an
example with a tuple incrementing its integer
content by one, at every hop. (top) the specific
topology force update operations on the whole
network (bottom) if alternative paths can be
found, updates can be much more localized.

How can we perform such localized maintenance
operations in a fully distributed way? To fix ideas, let us
consider the case of a tuple incrementing its integer
content by one, at every hop.

Given a local instance of such a tuple X, we will call Y
a X�s supporting tuple if: Y belongs to the same

distributed tuple as X, Y is one-hop distant from X, Y
value is equal to X value minus 1.With such a definition,
a X�s supporting tuple is a tuple that could have created X
during its propagation.

Moreover, we will say that X is in a safe-state if it has
a supporting tuple, or if it is the source of the distributed
tuple. We will say that a tuple is not in a safe-state if the
above condition does not apply.

Each local tuple can subscribe to the income or the
removal of other tuples belonging to its same type in its
one-hop neighborhood. This means, for example, that the
tuple depicted in figure 12-bottom, installed on node F
and having value 5 will be subscribed to the removal of
tuples in its neighborhood (i.e. nodes E and G).

Upon a removal, each tuple reacts by checking if it is
still in a safe-state. In the case a tuple is in a safe-state,
the tuple the removal has not any effect - see later -. In
the case a tuple is not in a safe state, it erases itself from
the local tuple space. This eventually cause a cascading
tuples� deletion until a safe-state tuple can be found, or
the source is eventually reached, or all the tuples in that
connected sub-network are deleted (as in the case of
figure 12-top). When a safe-state tuple observes a
deletion in its neighborhood it can fill that gap, and reacts
by propagating to that node. This is what happens in
figure 12-bottom, safe-state tuple installed on mode C
and having value 3 propagates a tuple with value 4 to the
hole left by tuple deletion (node D). It is worth noting
that this mechanism is the same enforced when a new
peer is connected to the network.

Similar considerations applies with regard to tuples�
arrival: when a tuple sense the arrival of a tuple having
value lower than its supporting tuple, it means that,
because of nodes� mobility, a short-cut leading quicker to
the source happened. Also in this case the tuple must
update its value to take into account the new topology.

So, what is the impact of a local change in the network
topology in real scenarios?

To answer these questions we exploited the
implemented TOTA simulator, being able to derive
results depicted in figure 13.

The graphs show results obtained by more than 100
experiments, conducted on different networks. We
considered networks having an average density (i.e.
average number of nodes directly connected to an other
node) of 5.7, 7.2 and 8.8 respectively (these numbers
come from the fact that in our experiments they
correspond to 150, 200, 250 peers, respectively). In each
network, a tuple, incrementing its content at every hop,
had been propagated. Nodes in the network move
randomly, continuously changing the network topology.
The number of messages sent between peers to keep the
tuple shape coherent had been recorded.

Figure 13-a shows the average number of messages

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 10

sent by peers located in an x-hop radius from the origin
of the topology change. Figure 13-b shows the same
values, but in these experiments only the source of the
tuple moves, changing the topology. Figure 13-c shows
the percentage of topology changes, happened during the
experiments, that required a specific number of messages
to be dealt with (see caption).

a)
0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8# hops from topology change

av
g.

 #
 m

es
sa

ge
s

se
nt

avg. density = 5.7;
avg. diameter = 15.1
avg. density = 7.2;
avg. diameter = 14.8
avg. density = 8.8;
avg. diameter = 12.7

b)
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 1 2 3 4 5 6 7 8# hops from topology change

av
g.

 #
 m

es
sa

ge
s

se
nt

avg. density = 5.7;
avg. diameter = 15.1
avg. density = 7.2;
avg. diameter = 14.8
avg. density = 8.8;
avg. diameter = 12.7

c)
0

0,05

0,1

0,15

0,2

0,25

0,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
avg. # messages to deal with topology chancge

%
 o

f t
he

 e
xp

er
im

en
ts

 re
qu

iri
ng

 c
or

re
sp

od
in

g

m
es

sa
ge

s
to

 b
e

de
al

t w
ith avg. density = 5.7;

avg. diameter = 15.1
avg. density = 7.2;
avg. diameter = 14.8
avg. density = 8.8;
avg. diameter = 12.7

Figure 13: Experimental results: locality scopes
in tuple�s maintenance operations emerge in a
network without predefined boundaries. (a)
topology changes are caused by random peer
movements. (b) topology changes are caused by
the movement of the source peer. (c) Number of
topology changes, happened during the
experiments, that required a specific number of
messages to be dealt with (e.g. in 27% of the
diamond experiment, the topology change has
been fixed with about 1.5 messages being
exchanged)

The most important consideration we can make
looking at those graphs, is that, upon a topology change,
a lot of update operations will be required near the source
of the topology change, while only few operations will be
required far away from it. This implies that, even if the
TOTA network and the tuples being propagated have no
artificial boundaries, the operations to keep their shape
consistent are strictly confined within a locality scope
(figure 13-a-b).

Moreover, figure 13-c, shows that the topology change
that are likely to involve large-scale update are much less
frequent than operations requiring only local
rearrangements. This fact supports the feasibility of the
TOTA approach in terms of its scalability. In fact, this
means that, even in a large network with a lot of nodes
and tuples, we do not have to continuously flood the
whole network with updates, eventually generated by
changes in distant areas of the network. Updates are
almost always confined within a locality scope from
where they took place.

Other experiments, related to test the scalability of the
system in other situations, are in our research agenda. For
instance, it will be particularly interesting to see what
happens when a large portion of the network topology
changes, such as in networks of TOTA nodes embedded
in vehicle or carried on by a person).

6. Related Works
A number of recent proposals address the problem of
defining supporting environments for the development of
adaptive, dynamic, context-aware distributed
applications, suitable for pervasive computing.

Smart Messages (SM) [3], rooted in the area of active
networks, is an architecture for computation and
communication in large networks of embedded systems.
Communication is realized by sending �smart messages�
in the network, i.e., messages which include code to be
executed at each hop in the network path. SM shares with
TOTA, the general idea of putting intelligence in the
network by letting messages (or tuples) execute hop-by-
hop small chunk of code to determine their propagation.
The main difference between SM and TOTA is that in
SM messages tend to be used as light-weight mobile
agents, roaming across the network, and performing
different tasks. In TOTA tuples tend to form self-
maintained distributed data structures guiding other
agents in their task.

The L2imbo model, proposed in [6], is based on the
notion of distributed tuple spaces augmented with
processes (Bridging Agents) in charge of moving tuples
form one space to another. Bridging agent can also
change the content of the tuple being moved for example
to provide format conversion between tuple spaces. The

Copyright IEEE Computer Society, 2004. Paper appearing in the proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications, Orlando (FL), March 2004.

 11

main differences between L2imbo and TOTA are that in
L2imbo, tuples are conceived as �separate� entities and
their propagation is mainly performed to let them being
accessible from multiple tuple spaces. In TOTA, tuples
form distributed data structure and their �meaning� is in
the whole data structure rather than in a single tuple.
Because of this conceptual difference, tuples�
propagation is defined for every single tuple in TOTA,
while is defined for the whole tuple space in L2imbo.

Lime [14] exploits transiently tuple spaces as the basis
for interaction in dynamic network scenario. Each mobile
device, as well as each network nodes, owns a private
tuple space. Upon connection with other devices or with
network nodes, the privately owned tuple spaces can
merge in a federated tuple space, to be used as a common
data space to exchange information. TOTA subsumes and
extend the Lime model. It is possible, via specific
propagation rules, to have tuples distributed only in a
local neighborhood, so as to achieve the same
functionalities of a locally shared tuple space of Lime. In
addition, propagation rules enable much more elaborated
kinds of information sharing other than simple local
merging of information. Similar considerations may
apply with regard to other proposals for shared
distributed data structures (e.g., the XMIDDLE [12]).

7. Conclusions and Future Works
Several issues are still to be investigated to make TOTA
a practically useful framework for the development of
pervasive applications. In particular, a criticism that can
apply to TOTA is the lack of an underlying general
methodology, enabling engineers to map a specific
coordination policy into the corresponding definition of
tuples and of their shape. Personally, we believe that a
great number of coordination patterns can be easily
engineered in TOTA even in the absence of a general
methodology (e.g., biological systems such as ant-
colonies can be sources of several ready-to-work
solutions [2]). Nevertheless, the definition of such a
methodology � which is still lacking in all of the related
approaches based on similar self-organization principles
� would be definitely of help and would possibly make
TOTA applicable to a wider class of distributed
coordination problems.

Acknowledgments. Work supported by the Italian
MIUR �Progetto Strategico IS-MANET, Infrastructures
for Mobile ad-hoc Networks �.

References

[1] F. Bellifemine, A. Poggi, G. Rimassa, �JADE - A
FIPA2000 Compliant Agent Development Environment�,
ACM Intl. Conference on Autonomous Agents, 2001.

[2] E. Bonabeau, M. Dorigo, G. Theraulaz, �Swarm
Intelligence�, Oxford University Press, 1999.

[3] C. Borcea, et al., �Cooperative Computing for Distributed
Embedded Systems�, IEEE Intl. Conference Distributed
Computing Systems, 2002.

[4] G. Cabri, L. Leonardi, F. Zambonelli, �Engineering
Mobile Agent Applications via Context-Dependent
Coordination�, IEEE Transactions on Software
Engineering, 28(11):371-380, Nov. 2002.

[5] A. Carzaniga, D. Rosenblum, A. Wolf, �Design and
Evaluation of a Wide-Area Event Notification Service�,
ACM Transaction on Computer System, 19(3):332-383.

[6] N. Davies, et al, �L2imbo: A distributed systems platform
for mobile computing�, ACM Mobile Networks and
Applications, 3(2):143-156.

[7] JINI, http://www.jini.org
[8] B. Johanson, A. Fox, "The Event Heap: A Coordination

Infrastructure for Interactive Workspaces", IEEE
Workshop on Mobile Computer Systems and
Applications, 2002.

[9] M. Mamei, F. Zambonelli, L. Leonardi, �Co-Fields: A
Physically Inspired Approach to Distributed Motion
Coordination�, IEEE Pervasive Computing, 2004, to
appear.

[10] M. Mamei, F. Zambonelli, L. Leonardi, "Tuples On The
Air: a Middleware for Context-Aware Computing in
Dynamic Networks", IEEE Intl. Conference Distributed
Computing Systems Workshops, 2003.

[11] M. Mamei, F. Zambonelli, �Self-Maintained Distributed
Tuples for Field-based Coordination in Dynamic
Networks�, ACM Symposium on Applied Computing,
Cyprus (CY), 2004.

[12] C. Mascolo, L. Capra, W. Emmerich, �An XML based
Middleware for Peer-to-Peer Computing�, IEEE Intl.
Conference of Peer-to-Peer Computing, 2001.

[13] Intl. Workshop on Mobile Teamwork Support,
http://www.infosys.tuwien.ac.at/motion/mts/

[14] G. P. Picco, A. L. Murphy, G. C. Roman, �LIME: a
Middleware for Logical and Physical Mobility�, IEEE
Intl. Conference Distributed Computing Systems, 2001.

[15] R. Want, G. Borriello, �Survey on Information
Appliances�, IEEE Computer Graphics and Applications,
20(3):24-31.

