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1 Introduction 

Computer science and software engineering are going to change dramatically. Scientists and 

engineers are spending a great deal of effort attempting to adapt and improve well-established 

models and methodologies for software development. However, the complexity introduced to 

software systems by several emerging computing scenarios goes beyond the capabilities of 

traditional computer science and software engineering abstractions, such as object-oriented and 

component-based methodologies. 

The scenario initiating the next software crisis is rapidly emerging: computing systems will 

be everywhere, always connected, and always active [Ten00]. Computer systems will be 

embedded in every object [Est02, GelSB02], e.g., in our physical environments, our clothes and 

furniture, and even our bodies. Wireless technologies will make network connectivity pervasive 

[AboM00], and every computing device will be connected in some network, whether the 

"traditional" Internet or ad-hoc local networks [Bro98]. Finally, computing systems will be 

always active to perform some activity on our behalf, e.g., to improve comfort at home or to 

control and automate manufacturing processes [NagSB03, Bus00].  

This scenario does not simply affect the design and development of software systems 

quantitatively, in terms of number of components and effort required. Instead, there will be a 

qualitative change in the characteristics of software systems, as well as in the methodologies 

adopted to develop them. In particular, four main characteristics, in addition to the quantitative 

increase in interconnected computing systems, distinguish future software systems from 

traditional ones: 

• situatedness: software components execute in the context of an environment, can 

influence it, and can be influenced by it; 

• openness: software systems are subject to decentralized management and can dynamically 

change their structure; 
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• locality in control: the components of software systems represents autonomous and 

proactive loci of control; 

• locality in interactions: despite living in a fully connected world, software components 

interact with each other accordingly to local (geographical or logical) patterns. 

The above four characteristics are the ones that are typically used to characterize multi-agent 

systems in the research community of distributed artificial intelligence [Jen01]. However, if we 

go into details about the above characteristics, we can see that several research communities 

focused on different topics (e.g., manufacturing and environmental control systems [Bus00, 

Est02, IntGE00], mobile and pervasive computing [Wei93, AboM00], Internet [CabLZ02] and 

P2P computing [RipIF02]) are already recognizing their importance and are already adapting their 

models and technologies to take them into account. Thus, our first contribution is to attempt at 

synthesizing in a single conceptual framework several novel concepts and abstractions that are 

emerging in different areas without recognition of the basic commonalties, because of a lack of 

interaction and common terminology. 

Following this synthesis, we argue that the integration of these concepts and abstractions in 

software modeling and design does not simply represent a proper evolution of current models and 

methodologies. Instead, we anticipate a real revolution or (using Kuhn�s term [Kuh96]) a 

scientific change of paradigm, likely to impact most research communities horizontally and to 

change the very way we conceive, model, and build, "software components" and "software 

systems". Clear signals testify that next generation software systems will no longer be modeled 

and designed in terms of "mechanical" or "architectural" systems, but rather in terms of "physical" 

or "intentional" systems.  

2 What�s New? 

The four characteristics identified in the introduction (situatedness, openness, local control, local 

interactions) affect, with different flavors and to different extents, most of today�s software 

systems.  
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2.1 Situatedness 

Today�s computing systems are situated. That is, they have an explicit notion of the environment 

in which components are allocated and execute, they are affected in their execution by 

environmental characteristics, and their components often explicitly interact with that 

environment.  

We emphasize that software systems have never worked in isolation, but have always been 

and will always be immersed in some sort of environment. For instance, the execution of a 

running process in a multi-threaded machine is intrinsically affected by the dynamics of the 

multiprocessing system. However, traditional modeling and engineering approaches have always 

tried to mask the presence of the environment. In most cases, specific objects and components 

�wrap� the environment to model it in terms of a "normal" component, so that the environment in 

itself does not exist as a primary abstraction. Unfortunately, the environment in which 

components live and with which they interact indeed exists and may impact on application 

execution and on application modeling: 

• Several entities with which software components may need to interact are too complex in 

their structure and behavior to enable a trivial wrapping. 

• For a software system whose explicit goal is to monitor (sense) and control (affect) a physical 

environment or a logical (computational) environment, masking such an environment is not a 

natural choice. Instead, providing an explicit consciousness may become a primary 

application goal. 

• The environment can have its own dynamics, independent of a software system�s intrinsic 

dynamics. Wrapping the environment in an application entity will introduce forms of 

unpredictable non-determinism inside applications.  

For the above reasons, the current trend in both computer science and software engineering is to 

define the environment in which a software system executes explicitly as a primary abstraction, 

explicitly defining both the "boundaries" separating the software systems and its environment and 

the reciprocal influences of the two systems [OdePFB03]. This approach both avoids odd 
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wrapping activities needed to model each component of the external world as an internal 

application entity, and allows a software system to deal in a more natural way with the real-world 

environment that the software system itself may be devoted to monitor and control. In addition, 

explicit modeling of the environment and of its activities makes it possible to identify and confine 

clearly the sources of dynamics and unpredictability (and, thus, of non formalizability [Weg97]), 

and concentrate on our software components in terms of deterministic entities that have to deal 

with a dynamic and possibly unpredictable environment. 

 

Examples.  

Control systems for physical domains (e.g., manufacturing, traffic control, home care, health care) 

tend to be built by explicitly managing environmental data, and by explicitly taking into account 

the unpredictable dynamics of the environment via specific event-handling policies (or the like) 

[GusF01]. Similar problems arise in sensor and robot networks [Est02], where a multitude of 

components are spread throughout an unknown physical environment with the duty of exploring 

and monitoring it.  

Mobile and pervasive computing applications recognize the primary importance of context-

awareness, as the need for applications to maintain explicit models of environmental 

characteristics (e.g., characteristics related to the sensed physical environment [HowM02] or to 

the position of specific components in an environment [Pri01, NagSB03]) and environmental data  

(e.g., data provided by some embedded infrastructure in the environment [ImiG00]), rather than 

implicit models (in terms of the internal attributes of objects). 

Internet applications and web-based systems, which must be immersed in the existing and 

intrinsically dynamic Internet environment, are typically engineered by clearly defining the 

boundaries of the system in terms of "application� (including the new application components to 

be developed) and "middleware" (the environmental substrate in which components will be 

embedded) [ZamJW03,CabLZ02]. Clearly identifying and defining such boundaries is one of the 

key points in web-application engineering. Similarly, several systems for workflow management 
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and computer supported collaborative work are built around shared data space abstractions, to be 

exploited as the common environment for the execution of workflow processes and agents 

[Tol00, RicOD03].  

As a final example, it is worth noting that several promising proposals in the area of 

distributed problem solving and optimization (i.e., work on ant-based colonies [ParB01, 

ParBS02]) are based on a model centered around a dynamic virtual environment influencing the 

activities of distributed problem solver processes. 

2.2 Openness 

Living in an environment, perceiving it, and being affected by it, intrinsically imply some sort of 

openness of a software system. In fact, the system can no longer be conceived as an isolated 

world, but must instead be considered as a permeable sub-system, whose boundaries permit 

reciprocal side-effects.  

In several cases, to achieve their objectives, software systems must interact with external 

software components, either to provide them with services or data, or to acquire them. More 

generally, different software systems, independently designed and modeled, are likely to "live" in 

the same environment and explicitly interact with each other. These forms of open interactions 

call for common ontologies, communication protocols, and suitable broker infrastructures, to 

enable interoperability. However, this is only a small part of the problem, and simply enabling 

interoperability is not enough when software systems may come to life and die in an environment 

independently of each other, in a very dynamic way, or when a software system (or its 

components) can explicitly move across different environments during its life. These 

characteristics introduce additional problems: 

• When a component interacts with other components in other software systems, and when 

components move across different environment, it may become difficult if not impossible 

to clearly identify the system to which a component belongs. In other words, it becomes 

difficult to understand the boundaries of software systems clearly. 
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• When a component comes to life in an environment (or is moved to a specific 

environment), it must somehow be made aware of its environmental context, what other 

components there are eligible for interaction, and how it can interact in the newly entered 

system without endangering either the system or itself. 

• Enabling components to enter and leave an environment in a fully free way and interact 

with each other may make it very hard to understand and control the overall behavior of 

these software systems and even of a single software system. 

Due to the above problems, software development may require facing the problem of not only 

modeling the environment in which systems execute, but also of understanding and modeling 

dynamic changes in the system structure. Also, the need to preserve the coherence of the system 

despite openness may require identifying and enacting specific policies, intended to support the 

re-organization of the software system in response the changes in its structure, or to enact 

contextual laws on the activity of those components entering the system. The general aim is 

increase the ability to control the system execution despite its dynamic structural changes. 

 

Examples.  

Control systems for critical physical domains typically run forever, cannot be stopped, and 

sometimes cannot even be removed from the environment in which they are embedded. 

Nevertheless, these systems need to be continuously updated, and the environment in which they 

live is likely to change frequently, with the addition of new physical components and, 

consequently, of new software components and software systems [Ten00]. For all these systems, 

managing openness and the capability of a system to re-organize itself automatically (e.g., by 

establishing new effective interactions with new components and/or by changing the structure of 

the interaction graph [IntGE00, RipIF02]) is very important, as is the ability of a component to 

enter new execution contexts safety and effectively. Also, with respect to pervasive computing 

systems (e.g., sensor networks and networks of embedded computer-based systems), lack of 
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power or simply communication unreachability [Est02] can make nodes come and go 

unpredictably, thus requiring frequent restructuring of communication patterns. 

Mobility, whether of users, software, or devices, moves the concept of openness to the 

extreme, by making components actually move from one context to another during their 

execution, thus changing the structure of the software system executing in that context [Whi97, 

CabLZ02]. This requires not only the capability of components to acquire knowledge about the 

newly entered context in which they execute, but also the capability to organize and control 

component interactions in the context [PicMR00]. Such challenges are exacerbated in the context 

of mobile ad-hoc networking, where interactions must be fruitful and somehow controllable 

despite the lack of any intrinsic structure and the dynamics of connectivity [Bro98].   

Similar considerations apply to Internet-based and open distributed computing. There, 

software services must survive the dynamics and uncertainty of the Internet, must be able to serve 

any client component, and must also be able to enact security and resource control policies in 

their local context, e.g., a given administrative domain [CabLZ02]. E-marketplaces are the most 

typical examples of this class of open Internet applications [RodS02]. P2P systems (e.g., Gnutella 

and Freenet) correspond to Internet applications as ad-hoc networking corresponds to mobile 

computing system. In these cases, components must be allowed to interact fruitfully and properly 

without any pre-determined interaction structure and by surviving the dynamics of services and 

data availability [RowD01, RipIF02]. 

2.3 Local Control 

The "flow of control" concept has always been one of the key aspects of computer science and 

software engineering at all levels, from the hardware level up to the high-level design of 

applications. However, when software systems and components live and interact in an open 

world, the concept of flow of control becomes meaningless.  

Independent software systems have their own autonomous flows of control, and their mutual 

interactions do not imply any join of these flows. Therefore, the modeling and designing of open 

software not only makes the concept of "software system" rather vague, as discussed in 
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Subsection 2.2, but it also makes the concept of "global execution control" disappear. This trend 

is exacerbated by the fact that each independent system not only has its own flow of control, but 

also may have components that are individually autonomous. In fact, most components of today's 

software systems are active entities (e.g., active objects with internal threads of control, 

processes, daemons) rather than passive ones (e.g., "normal" objects, functions, etc.).  

We are aware that concurrent and parallel programming are well-established paradigms, and 

that applications with multiple threads and processes have been around for a long time. However, 

traditional concurrent and parallel programming, in order to improve efficiency and performance, 

exploit multiple flows of execution by avoiding making them multiple threads of control. In fact, 

most traditional approaches limit as much as possible the autonomy of these multiple flows of 

execution, via strict synchronization and coordination mechanisms, with the goal of preserving 

determinism and control in application execution. This tendency can be seen even in some 

approaches to multiagent systems engineering, aimed at somehow limiting agents� autonomy 

[WooJ98]. However, today's autonomy of application components has different motivations and 

must be handled differently: 

• In an open world, autonomy of execution enables a component to move across systems and 

environments without having to report back to (or wait for acknowledgment by) its original 

application. 

• When components and systems are immersed in a highly dynamic environment whose 

evolution must be monitored and controlled, an autonomous component can be effectively 

delegated to take care of (a portion of) the environment independently of the global flow of 

control. 

• Several software systems are not only made up of software components, but also integrate 

computer-based systems, which are by their very nature autonomous systems, and can be 

modeled accordingly. 

• As the size of a software system increases, the need of delegating control to components is 

no longer simply a matter of performance, but becomes a matter of conceptual simplicity. In 
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fact, coordinating a global flow of control among a large number of components may 

become unfeasible, and autonomy can become an additional dimension of modularity 

[Par97]. 

 

Examples.  

Almost all of today's software systems integrate autonomous components. At its weakest, 

autonomy reduces to the ability of a component to react to and handle events, as can be the case 

of graphical interfaces or simple embedded sensors.  However, in many cases, autonomy implies 

that a component integrates an autonomous thread of execution, and can execute in a proactive 

way.  

This is the case in most modern control systems for physical domains, in which control is not 

simply reactive but proactive, realized via a set of cooperative autonomous processes or, as is 

often the case, via embedded complete computer-based systems interacting with each other 

[GusF01] or via distributed sensor networks [IntGE00, Est02, NagSB03].  

The integration in complex distributed applications and systems of (software running on) 

mobile devices of any type can be tackled only by modeling them in terms of autonomous 

software components [PicMR00, CabLZ02]. 

Internet based distributed applications are typically made up of autonomous processes, 

possibly executing on different nodes, and cooperating with each other, a choice driven by 

conceptual simplicity and by decentralized management rather than by the actual need of 

autonomous concurrent activities.   

2.4 Local Interactions 

Directly deriving from the above three issues, the concept of "local interactions in a global world" 

is more and more pervading today's software systems.  

By now, we have delineated a scenario in which software system components are immersed 

in a specific environment, execute in the context of a specific (sub)system, and are delegated to 
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perform some task autonomously. Taken all together, these aspects naturally lead to a strict 

enforcement of locality in interactions. In fact: 

• Autonomous components can interact with the environment in which they are immersed, by 

sensing and affecting it. If the environment is physical, the amount of the physical world a 

single component can sense and affect is locally bounded by physical laws. If the 

environment is logical, minimization of conceptual and management complexity still favors 

modeling it in local terms and limiting the effect of a single component on the environment. 

• Components can normally interact with each other in the context of the software system to 

which they belong, that is, locally to their system. In open work, however, a component of a 

system can also interact with (components of) other systems. In these cases, minimization 

of conceptual complexity suggests modeling the component as though it has temporarily 

"moved" to another context, and in which it interacts locally [CabLZ02]. 

• In an open world, components need some form of context-awareness to execute and interact 

effectively. However, for a component to be made aware of its context effectively (and 

efficiently), this context must necessarily be locally confined.  

Locality in interactions is a strong requirement when the number of components in a system 

increases, or as the scale of distribution increases. The presence of autonomous threads of control 

may make tracking and controlling concurrent, autonomous, and autonomously initiated 

interactions much more difficult than in object-based and component-based applications, even if 

these interactions are strictly local. 

 

Examples.  

Control systems for physical domains tend to enforce local interactions by their very nature. Each 

control component is delegated to control a portion of the environment, and its interactions with 

other components are usually limited to those that control neighboring portions of that 

environment, with which it typically is strictly coordinated [Est02].  
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In mobile computing, including applications for wearable systems and sensor networks, the 

very nature of wireless connections forces locality in interactions. Since wireless communication 

has limited range, a mobile computing component can directly interact only with a limited portion 

of the world at a given time [PicMR00, Bro98].  

Applications distributed in the Internet have to take into account the specific characteristics 

of the local administrative domain in which its components execute and have to interact, and 

components are usually allocated in Internet nodes so as to enforce as much as possible locality in 

interactions [CabLZ02, Whi97].  

 
Fig. 1. The Scenario of Modern Software Systems 

 

2.5 A General Model  

In sum, software systems can be increasingly assimilated in the scheme of Figure 1. Software 

systems (dashed ellipses) are made up of autonomous components (black circles), interacting 

locally with each other and possibly with the components of other systems. Accordingly, some 

components may be part of several software systems at different times, depending on their current 

interaction activities. Systems and components are immersed in an environment, typically 

composed of (or modeled as) a set of environment partitions. Components in a system can sense 
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and affect a local portion of the environment. Also, since the portions of the environment that two 

components may access may overlap with each other, two components may interact indirectly 

with each other via the environment.  

The scenario of Figure 1 is very different from that of component-based and object-based 

programming, and matches the prevailing model of agent-based computing [Jen01]. Agents are 

considered as situated software entities (i.e., they live in an environment) that execute 

autonomously (i.e., have local control of their actions) and that interact with other agents. Local 

interactions are often promoted, although they may not be explicitly mentioned as part of the 

model. Despite this fact, most scientists working on agent-based computing still focus mostly on 

the �artificial intelligence� aspects of the discipline, without noticing (or simply deliberately 

ignoring) that agents and agent-based computing have the potential to be a general model for 

today's computing systems and that different research communities are facing similar problems 

and are starting adopting similar modeling techniques. Similarly, outside the artificial intelligence 

community, computer scientists and software engineers fail to recognize that their current systems 

can be assimilated to agent-based systems and modeled as agent-based systems.  

The issues discussed in this paper can help clarify these strict relationships and the need for 

more interaction between different research communities, due to the strong similarities (we are 

tempted to say isomorphism) between the problems they address. 

3 Changing our Attitudes 

Traditionally, software systems are modeled from a mechanical stance, and engineered from a 

design stance. Computer scientists are both burdened and fascinated by the urge to define suitable 

formal theories of computation, to prove properties of software systems, and to provide a formal 

framework for engineering. Software engineers are used to analyzing the functionality that a 

system should exhibit in a top-down way, and to designing software architectures as reliable 

multi-component machines, capable of providing the required functionality efficiently and 

predictably.  
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In the future, scientists and engineers will have to design software system to execute in a 

world where a multitude of autonomous, embedded, and mobile software components are already 

executing and interacting with each other and with the environment on the basis of local 

interaction patterns. Such a scenario may require untraditional models and methodology. 

3.1 How Will Computer Science Change? 

Modeling and handling systems with a very large number of components can be feasible if such 

components are not autonomous, i.e., are subject to a single flow of control. However, when the 

activities of these components are autonomous, it is hard, if not conceptually and computationally 

infeasible, to track them one by one so as to describe precisely the system�s behavior in terms of 

the behavior of its components. In addition, as several software systems are distributed and 

subject to decentralized control, or possibly embedded in some unreachable environment [Est02], 

tracking components and controlling their behavior is simply impossible. Such systems can only 

be described and modeled as a whole, in terms of macro-level observable characteristics, just as a 

chemist describes a gas in terms of macro properties like pressure and temperature. 

This problem is exacerbated by the fact that components will interact with each other. 

Accordingly, the overall behavior of a system will emerge not only as the sum of the behavior of 

its components, but also as a result of their mutual interactions. One may argue that since 

interactions tend to be confined locally (Subsection 2.4), it should be quite easy to control their 

effect. Unfortunately, the effect of local interactions can propagate globally and be very difficult 

to predict [PriS91, MamRZ03]. Propagation of local effects over a long distance is a hallmark of 

phase transitions in physical systems [BinDFN92], to which many analogs are being discovered 

in distributed computational systems [Vat03]. Even if one knows the initial status of the system 

very accurately, nonlinearities can amplify small deviations to become arbitrarily great, making 

prediction over a long time horizon impossible. 

As an additional problem, we must consider that software systems will execute in an open 

and dynamic scenario, where new components can be added and removed at any time, and where 

some of these components can autonomously move from one part of the system to another., 
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changing the structure of the interaction graph. Thus, it is difficult to predict and control precisely 

not only the global dynamic behavior of the system, but also how such behavior can be influenced 

by such openness. In fact, it has been shown that the effects of interactions of autonomous active 

components strongly depend on the structure of the interaction graph [Wat99], so that the 

dynamic behavior of a system can change completely with only slight changes in the structure of 

the interaction graph.  

Situatedness causes similar problems. In fact, modern thermodynamics and social science tell 

us that environmental forces can produce very strange and large scale dynamic behaviors on 

situated physical, biological, and social systems [PriS91]. We can expect the same large-scale 

effects to emerge on situated software systems, because of the dynamics of the environment, as a 

preliminary set of experiments suggest [MamRZ03].  

The above problems will force computer scientists to change their attitudes dramatically in 

the modeling of complex software systems. Traditional formalisms and methods, aimed at 

proving the properties of software via logical tools, can deal effectively only with very small 

systems (or with small portions of large systems). The dream of dealing with fully formalizable 

software systems has already started to vanish with the advent of concurrent and interactive 

systems [Weg97], and it will become even more impractical in the next few years. In fact, as soon 

as a system becomes large, open, and made up of autonomous and situated components, its 

behavior can become so complex to be irreducible [Wol02]. The only way to understand the 

behavior of such a system is to execute the system and observe it.  

The next challenge is to find alternative models or, more radically, to adopt a brand-new 

scientific background for the study of software systems, enabling us to study, predict, and control 

the properties of a system and its dynamic behavior (or at least some relevant properties and some 

specific kinds of observable behavior) despite the inability to control and predict the micro-level 

behavior of its individual components.  
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Signals. Some signals of this trend can already be found in different areas of the research 

community.  

Recent study and monitoring activities on the Web [CroB97, AlbJB99] and on P2P networks 

[RipIF02] have made it clear that unpredictable and large-scale behaviors are already here, 

requiring new models and tools for their description. For instance, it has been shown that 

traditional Web caching policies are no longer effective when peculiar dynamic Web-access 

patterns emerge [CroB97] and that traditional reliability models fall short due to the specific 

emergent characteristics of Web and P2P networks [AlbJB00, RipIF02].  

Some approaches to model and describe software systems in terms of thermodynamic 

systems have already been proposed [ParB01, ParBS02]. The ideas behind such research are 

twofold: to provide synthetic indicators capable of measuring how closely the system is 

approaching the desired behavior, and to provide tools to measure the influence of environmental 

dynamics on the system. To some extent, a similar approach has been adopted in the area of 

massively parallel computing, where the need to measure specific global systems properties 

dynamically requires the introduction of synthetic indicators [CorLZ99]. Similarly, it has been 

recognized that modeling large and dynamic (overlay) networks can only be faced by introducing 

macro properties rather than by direct representation of the network [AlbJB99, RipIF02]. 

One area that clearly shows such a trend is artificial intelligence. The claim that "rational" 

intelligence can emerge from a complex machine capable of manipulating facts and logic theories 

has always been strongly debated since the origins of computer science, and several alternative 

ways to model intelligence and to build intelligent systems in terms of large interactive systems 

have been proposed (e.g., neural networks and evolutionary algorithms). Nevertheless, all these 

proposals led only to special-purpose applications, and never entered the mainstream of computer 

science and artificial intelligence. Now, the abstractions promoted by agent-based computing and 

multiagent systems (matching the characteristics of today's software systems, Subsection 2.5) 

have promoted a shift to the concept of "intentional" intelligence, i.e., the capability of a 

component or of a system to behave autonomously and to interact so as to achieve a given, 
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general-purpose, goal. In this context, organization theory [ZamJW03] and social science 

[MosT95] are starting to influence research, as it is recognized that the behavior of a large scale 

software system can be assimilated more appropriately to a human organization aimed at reaching 

a global organizational goal, or to a society in which the overall global behavior derives from the 

self-interested intentional behavior of its individual members, than to a logical or mechanical 

system. Similarly, inspiration for computer scientists comes increasingly from the complex 

mechanisms of biological ecosystems, as well as the mindsets of the biological sciences 

[HubH93, GusF01, Nag02]. 

Given the above signals, we expect theories and models from complex dynamical systems 

and modern thermodynamics, as well as from biology, social science, and organizational science, 

to become more and more the sine-qua-non cultural background of the computer scientist (other 

than, as of today, of researchers in the area of multiagent systems).   

3.2 How Will Software Engineering Change? 

The change in the modeling and understanding of complex software systems will also definitely 

impact the way such systems are designed, tested, and maintained. 

With regard to design, the lack of micro-level control in a software system makes it 

impossible to obtain a well-defined behavior of a multi-component system �by design,� i.e., in 

mechanical and deterministic terms. The next challenge for the effective construction of large 

software systems is to build them so as to guarantee that the system as a whole will behave as 

desired (or reasonably close to an ideal desired behavior) despite the lack of exact knowledge 

about its micro-behavior. For instance, by adopting a "physical" attitude toward software design, 

a possible approach could be to build a system that, despite uncertainty on the initial conditions, 

is within a basin of attraction leading to a stable attractor. By adopting a "teleological" attitude, 

the idea could be to build an ecosystem, or a society of components, able to behave in an 

intentional way, and robust enough to direct its global activities toward the achievement of the 

required goal, or to approach the goal reasonably closely. The design must also explicitly take 

into account the fact that a system will be immersed in an open and dynamic environment, 
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making it useless to design it in isolation. By promoting the environment and its dynamics to a 

primary design abstraction, the design may either assume a defensive approach (treating them as 

sources of uncertainty that can somehow be damaging to the global behavior of a system and that 

the system should be prepared to face) or an offensive approach (considering openness and 

environmental dynamics as additional design dimensions to be exploited with the possibility of 

improving the behavior of the system [ParBS02]).  

Testing, traditionally, amounts to analyzing system state transitions to see if they correspond 

to the designed ones or if, instead, some of the components exhibit bad state transitions (i.e., 

bugs). While it is already well known that such work is very hard for large (even not concurrent) 

systems, it may become impossible when autonomy and environmental dynamics produce a 

practically uncountable number of states and non-deterministic state transitions. Thus, a large 

software system will no longer be tested with the goal of finding errors, but rather with regard to 

its ability to behave as needed as a whole, independently of the exact behavior of its components 

and of their initial conditions [Huh01]. Moreover, a software system that is likely to be immersed 

in an existing dynamic environment, where other systems are already executing and cannot be 

stopped, cannot be simply tested and evaluated in terms of its capability of achieving the required 

goal. Instead, the test must also evaluate the effect of the environment on the software system, as 

well as the effects of the software system on the environment. The better and more robust a 

system, the greater its ability to advance its goals independently of the dynamics of the 

environment, and the lower its impact on the surrounding environment (and thus on other 

software systems).  

Maintaining software will change too. First of all, because of autonomy and openness, every 

software system can be considered to some extent unstable and in continuous need of 

maintenance due to changed conditions. From a more traditional perspective on maintenance, 

when a large software system no longer behaves as needed (for instance, when the external 

conditions require some change in the behavior of a software system), update will no longer 

imply stopping the system, rebuilding it, and retesting it. Instead, it will imply intervening on the 
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system from the outside, by adding new components with different attitudes and by removing 

some of its existing components so as to change, as needed, the overall behavior of the system. In 

this case, the openness and situatedness of the system and the autonomy of its component can 

also make maintenance and updating smoother and less expensive, in that the system is already 

designed to tolerate and support dynamic changes in its structure. 

 

Signals. Again, it is possible to identify a few exemplary projects that are already adopting, to 

different extents, such a novel software engineering perspective.   

In the area of distributed operating systems management, policies for the management of 

distributed resources are already being designed in terms of autonomous components able to 

guarantee the achievement of a global goal via local actions and local interactions, despite the 

dynamics of the environment [Cyb89]. The design of these policies is, in several cases, inspired 

by physical phenomenon, such as diffusion. This perspective has proven useful to re-establish 

global equilibrium in dynamic situations [CorLZ99], despite the fact that such equilibrium will 

never be perfect but always locally perturbed.  

Systems of ant colonies designed in a bottom-up way are able to solve very complex 

problems, which are hard to solve otherwise, via very simple autonomous components interacting 

in a dynamic environment [Par97]. There, the idea is to mimic in software the behavior of insect 

colonies living in a dynamic world and able to solve, as a group, problems that have an 

interesting computational counterpart (i.e., sorting and routing). In that case, the environmental 

dynamics plays a primary role in design and in the emergence of specific useful behaviors. In fact, 

in such systems, a fundamental phase of design and testing relates to understand and verify how 

the environmental activities impact on the overall behavior of the insect colony.  

Inspiration from a social phenomenon like epidemics has been useful in understanding 

distributed information in dynamic networks of components, such as mobile ad-hoc networks  

[PicMG03], despite the inability to control the information paths and the structure of a network 

exactly. There, the dynamics of the network is both a source of uncertainty and a useful property 
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to guarantee that a message can be propagated to the whole network in a reasonable time. P2P 

information dissemination systems exploit in a similar way the dynamic properties of 

spontaneously generated community network [RipIF02], which can survive dynamics and 

changes in users� interests and in network structure without any sort of centralized management 

and without any user-directed maintenance. The related phenomenon of gossip, through which 

information can reach any person in a social network with dramatic speed, has recently inspired 

routing algorithms in different areas (i.e., wide area event notification [Cug03] and routing in 

sensor networks [BraE02]). 

The impossibility of detecting the structure of a network and of its components, because of 

both the dimension and the intrinsic dynamics of the network, is challenging the whole concepts 

of information routing and information retrieval. In different areas (e.g., pervasive and mobile 

computing [Adj99], P2P Internet computing [RowD01, Rat01, Sto01], middleware [CarRW01], 

sensor networks [IntGE00, Est02]), there is a general understanding that the dynamics of 

networks require novel (content-oriented rather than path-oriented) approaches to information 

retrieval and routing. In other words, the basic idea is that paths to information 

sources/destinations should be found dynamically by relying on abstract overlay networks that 

continuously and automatically reshape themselves in response to system dynamics, and where 

data (or queries) can follow the shape of the overlay network just as a ball rolls down a sloped 

surface. The final destination is less important than that that the paths followed by data and 

queries always proceed in a �good� direction and eventually reach a point where nodes interested 

in the routed message (or where interesting information) can be found. It is also worth noting that 

such systems are typically tested and evaluated in terms of how much the system can tolerate 

network dynamics by still exhibiting reasonably good behaviors, how fast the overlay network 

can re-organize in response to dynamic changes, and how the addition or removal of components 

impact the behavior of the network [AlbJB00, RowD01].  

A biological phenomenon such as evolution, despite its intrinsic uncertainty, is likely to 

become a useful tool too for software engineers. For instance, though cellular automata have the 
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potential to perform complex computations as a result of their dynamic evolution, it turns out to 

be almost impossible to understand which rules must be imposed on cells and on their interaction 

so as to produce a system with certain required properties [Wol02]. An approach that has been 

successfully experienced is to make cellular automata rules evolve (e.g., via genetic algorithms) 

and eventually come up with specific rules leading to the desired global behavior of the automata, 

without anyone having directly designed such behaviors [Sip99]. This approach has also been 

successful with computational systems more complex than cellular automata [SauMPB02]. 

4 Discussion and Conclusions 

Modern software systems, in different application areas, exhibit characteristics that make them 

very different from the software systems to which we, as scientists and engineers, are 

accustomed. These characteristics are likely to impact dramatically the very way software systems 

will be modeled and engineered, leading to a paradigm shift in computer science and software 

engineering [Kuh96]. In fact, we will be required to change from our traditional "design" attitude, 

implying a mechanical perspective, to an "intentional" attitude, requiring physical, biological, and 

teleological perspectives, and consequently a brand new set of conceptual tools and 

methodologies.  

One possible criticism of this approach is that software systems, on which humans are more 

and more dependent for their everyday activities and for the control of safe critical situations, 

cannot be engineered in the way we have traditionally envisioned. Many claim that a software 

system must exhibit predictable and fully controllable behaviour in each of its parts, and that the 

duty of a software engineer is to produce such reliable systems. For instance, pessimists foresee 

the sudden death of peer-to-peer software systems, despite their current success, because of their 

unreliability and the impossibility of properly modelling them. In our opinion, this approach is 

not correct. Constraining the behaviour of a highly interactive system may sacrifice most of its 

computational power and may require much more waste of resources to obtain the same 

functionalities. The engineering work needed to make a system fully controllable may be greater 

than the work needed to make a useful global behaviour, still reliable and stable, emerge from it. 
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Finally, constraining �by design� a software system may simply make it lose the properties 

needed to support openness and to tolerate environmental dynamics. 

Despite the opposing forces and the difficulties inherent in any revolution, including the need 

of restructuring our cultural background, the envisioned revolution in computer science and 

software engineering will definitely open the door to new interesting research and engineering 

challenges, and will be likely to enable new powerful applications of ICT technologies.  
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